Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 34(11): 2474-2486.e5, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38772362

ABSTRACT

ON and OFF thalamic afferents from the two eyes converge in the primary visual cortex to form binocular receptive fields. The receptive fields need to be diverse to sample our visual world but also similar across eyes to achieve binocular fusion. It is currently unknown how the cortex balances these competing needs between receptive-field diversity and similarity. Our results demonstrate that receptive fields in the cat visual cortex are binocularly matched with exquisite precision for retinotopy, orientation/direction preference, orientation/direction selectivity, response latency, and ON-OFF polarity/structure. Specifically, the average binocular mismatches in retinotopy and ON-OFF structure are tightly restricted to 1/20 and 1/5 of the average receptive-field size but are still large enough to generate all types of binocular disparity tuning. Based on these results, we conclude that cortical receptive fields are binocularly matched with the high precision needed to facilitate binocular fusion while allowing restricted mismatches to process visual depth.


Subject(s)
Primary Visual Cortex , Vision, Binocular , Animals , Cats/physiology , Vision, Binocular/physiology , Primary Visual Cortex/physiology , Visual Fields/physiology , Visual Cortex/physiology , Vision Disparity/physiology
2.
Atten Percept Psychophys ; 81(8): 2745-2754, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31292942

ABSTRACT

Most decisions require information gathering from a stimulus presented with different gaps. However, the neural mechanism underlying this integration is ambiguous. Recently, it has been claimed that humans can optimally integrate the information of two discrete pulses independent of the temporal gap between them. Interestingly, subjects' performance on such a task, with two discrete pulses, is superior to what a perfect accumulator can predict. Although numerous neuronal and descriptive models have been proposed to explain the mechanism of perceptual decision-making, none can explain human behavior on this two-pulse task. In order to investigate the mechanism of decision-making on the noted tasks, a set of modified drift-diffusion models based on different hypotheses were used. Model comparisons clarified that, in a sequence of information arriving at different times, the accumulated information of earlier evidence affects the process of information accumulation of later evidence. It was shown that the rate of information extraction depends on whether the pulse is the first or the second one. Moreover, our findings suggest that a drift diffusion model with a dynamic drift rate can also explain the stronger effect of the second pulse on decisions as shown by Kiani et al. (Journal of Neuroscience, 33 (42), 16483-16489, 2013).


Subject(s)
Decision Making/physiology , Models, Neurological , Visual Perception/physiology , Adult , Cues , Female , Humans , Male , Photic Stimulation , Reaction Time/physiology , Young Adult
3.
Front Behav Neurosci ; 13: 9, 2019.
Article in English | MEDLINE | ID: mdl-30804764

ABSTRACT

Bias in perceptual decisions can be generally defined as an effect which is controlled by factors other than the decision-relevant information (e.g., perceptual information in a perceptual task, when trials are independent). The literature on decision-making suggests two main hypotheses to account for this kind of bias: internal bias signals are derived from (a) the residual of motor signals generated to report a decision in the past, and (b) the residual of sensory information extracted from the stimulus in the past. Beside these hypotheses, this study suggests that making a decision in the past per se may bias the next decision. We demonstrate the validity of this assumption, first, by performing behavioral experiments based on the two-alternative forced-choice (TAFC) discrimination of motion direction paradigms and, then, we modified the pure drift-diffusion model (DDM) based on the accumulation-to-bound mechanism to account for the sequential effect. In both cases, the trace of the previous trial influences the current decision. Results indicate that the probability of being correct in the current decision increases if it is in line with the previously made decision even in the presence of feedback. Moreover, a modified model that keeps the previous decision information in the starting point of evidence accumulation provides a better fit to the behavioral data. Our findings suggest that the accumulated evidence in the decision-making process after crossing the bound in the previous decision can affect the parameters of information accumulation for the current decision in consecutive trials.

SELECTION OF CITATIONS
SEARCH DETAIL
...