Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(12): 7834-7848, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37267631

ABSTRACT

Our previous work identified compound 1 (SLU-2633) as a potent lead compound toward the identification of a novel treatment for cryptosporidiosis, caused by the parasite Cryptosporidium (EC50 = 0.17 µM). While this compound is potent and orally efficacious, the mechanism of action and biological target(s) of this series are currently unknown. In this study, we synthesized 70 compounds to develop phenotypic structure-activity relationships around the aryl "tail" group. In this process, we found that 2-substituted compounds are inactive, confirmed that electron withdrawing groups are preferred over electron donating groups, and that fluorine plays a remarkable role in the potency of these compounds. The most potent compound resulting from this work is SLU-10482 (52, EC50 = 0.07 µΜ), which was found to be orally efficacious with an ED90 < 5 mg/kg BID in a Cryptosporidium-infection mouse model, superior to SLU-2633.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Mice , Animals , Cryptosporidiosis/drug therapy , Fluorine , Structure-Activity Relationship
2.
J Pharmacol Exp Ther ; 370(2): 219-230, 2019 08.
Article in English | MEDLINE | ID: mdl-31189728

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is characterized by misexpression of the double homeobox 4 (DUX4) developmental transcription factor in mature skeletal muscle, where it is responsible for muscle degeneration. Preventing expression of DUX4 mRNA is a disease-modifying therapeutic strategy with the potential to halt or reverse the course of disease. We previously reported that agonists of the ß-2 adrenergic receptor suppress DUX4 expression by activating adenylate cyclase to increase cAMP levels. Efforts to further explore this signaling pathway led to the identification of p38 mitogen-activated protein kinase as a major regulator of DUX4 expression. In vitro experiments demonstrate that clinically advanced p38 inhibitors suppress DUX4 expression in FSHD type 1 and 2 myoblasts and differentiating myocytes in vitro with exquisite potency. Individual small interfering RNA-mediated knockdown of either p38α or p38ß suppresses DUX4 expression, demonstrating that each kinase isoform plays a distinct requisite role in activating DUX4 Finally, p38 inhibitors effectively suppress DUX4 expression in a mouse xenograft model of human FSHD gene regulation. These data support the repurposing of existing clinical p38 inhibitors as potential therapeutics for FSHD. The surprise finding that p38α and p38ß isoforms each independently contribute to DUX4 expression offers a unique opportunity to explore the utility of p38 isoform-selective inhibitors to balance efficacy and safety in skeletal muscle. We propose p38 inhibition as a disease-modifying therapeutic strategy for FSHD. SIGNIFICANCE STATEMENT: Facioscapulohumeral muscular dystrophy (FSHD) currently has no treatment options. This work provides evidence that repurposing a clinically advanced p38 inhibitor may provide the first disease-modifying drug for FSHD by suppressing toxic DUX4 expression, the root cause of muscle degeneration in this disease.


Subject(s)
Gene Expression Regulation/drug effects , Homeodomain Proteins/genetics , Muscular Dystrophy, Facioscapulohumeral/drug therapy , Protein Kinase Inhibitors/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Cell Line , Disease Models, Animal , Mice , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/pathology , Myoblasts/drug effects , Myoblasts/metabolism , Protein Kinase Inhibitors/therapeutic use
3.
J Biol Chem ; 292(44): 18344-18353, 2017 11 03.
Article in English | MEDLINE | ID: mdl-28918394

ABSTRACT

Apolipoprotein L1 (ApoL1) is a human serum protein conferring resistance to African trypanosomes, and certain ApoL1 variants increase susceptibility to some progressive kidney diseases. ApoL1 has been hypothesized to function like a pore-forming colicin and has been reported to have permeability effects on both intracellular and plasma membranes. Here, to gain insight into how ApoL1 may function in vivo, we used vesicle-based ion permeability, direct membrane association, and intrinsic fluorescence to study the activities of purified recombinant ApoL1. We found that ApoL1 confers chloride-selective permeability to preformed phospholipid vesicles and that this selectivity is strongly pH-sensitive, with maximal activity at pH 5 and little activity above pH 7. When ApoL1 and lipid were allowed to interact at low pH and were then brought to neutral pH, chloride permeability was suppressed, and potassium permeability was activated. Both chloride and potassium permeability linearly correlated with the mass of ApoL1 in the reaction mixture, and both exhibited lipid selectivity, requiring the presence of negatively charged lipids for activity. Potassium, but not chloride, permease activity required the presence of calcium ions in both the association and activation steps. Direct assessment of ApoL1-lipid associations confirmed that ApoL1 stably associates with phospholipid vesicles, requiring low pH and the presence of negatively charged phospholipids for maximal binding. Intrinsic fluorescence of ApoL1 supported the presence of a significant structural transition when ApoL1 is mixed with lipids at low pH. This pH-switchable ion-selective permeability may explain the different effects of ApoL1 reported in intracellular and plasma membrane environments.


Subject(s)
Apolipoprotein L1/metabolism , Cell Membrane/metabolism , Cetylpyridinium/metabolism , Models, Molecular , Potassium/metabolism , Apolipoprotein L1/chemistry , Apolipoprotein L1/genetics , Apolipoprotein L1/pharmacology , Biological Transport , Calcium Signaling , Cell Membrane/chemistry , Cell Membrane Permeability , Cetylpyridinium/chemistry , Fluorescence , Hydrogen-Ion Concentration , Lethal Dose 50 , Phosphatidic Acids/chemistry , Phosphatidic Acids/metabolism , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/metabolism , Phosphatidylserines/chemistry , Phosphatidylserines/metabolism , Potassium/chemistry , Protein Stability , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/metabolism , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/growth & development , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism
4.
Skelet Muscle ; 7(1): 16, 2017 09 04.
Article in English | MEDLINE | ID: mdl-28870238

ABSTRACT

BACKGROUND: Facioscapulohumeral dystrophy (FSHD) is a progressive muscle disease caused by mutations that lead to epigenetic derepression and inappropriate transcription of the double homeobox 4 (DUX4) gene in skeletal muscle. Drugs that enhance the repression of DUX4 and prevent its expression in skeletal muscle cells therefore represent candidate therapies for FSHD. METHODS: We screened an aggregated chemical library enriched for compounds with epigenetic activities and the Pharmakon 1600 library composed of compounds that have reached clinical testing to identify molecules that decrease DUX4 expression as monitored by the levels of DUX4 target genes in FSHD patient-derived skeletal muscle cell cultures. RESULTS: Our screens identified several classes of molecules that include inhibitors of the bromodomain and extra-terminal (BET) family of proteins and agonists of the beta-2 adrenergic receptor. Further studies showed that compounds from these two classes suppress the expression of DUX4 messenger RNA (mRNA) by blocking the activity of bromodomain-containing protein 4 (BRD4) or by increasing cyclic adenosine monophosphate (cAMP) levels, respectively. CONCLUSIONS: These data uncover pathways involved in the regulation of DUX4 expression in somatic cells, provide potential candidate classes of compounds for FSHD therapeutic development, and create an important opportunity for mechanistic studies that may uncover additional therapeutic targets.


Subject(s)
Adrenergic beta-2 Receptor Agonists/pharmacology , Homeodomain Proteins/metabolism , Muscular Dystrophy, Facioscapulohumeral/metabolism , Nuclear Proteins/metabolism , Small Molecule Libraries/pharmacology , Transcription Factors/metabolism , Cell Cycle Proteins , Cells, Cultured , Cyclic AMP/metabolism , High-Throughput Screening Assays , Homeodomain Proteins/genetics , Humans , Myoblasts/drug effects , Myoblasts/metabolism
5.
J Pharmacol Exp Ther ; 357(2): 423-31, 2016 May.
Article in English | MEDLINE | ID: mdl-26907621

ABSTRACT

Racecadotril (acetorphan) is a neutral endopeptidase (NEP) inhibitor with known antidiarrheal activity in animals and humans; however, in humans, it suffers from shortcomings that might be improved with newer drugs in this class that have progressed to the clinic for nonenteric disease indications. To identify potentially superior NEP inhibitors with immediate clinical utility for diarrhea treatment, we compared their efficacy and pharmacologic properties in a rat intestinal hypersecretion model. Racecadotril and seven other clinical-stage inhibitors of NEP were obtained or synthesized. Enzyme potency and specificity were compared using purified peptidases. Compounds were orally administered to rats before administration of castor oil to induce diarrhea. Stool weight was recorded over 4 hours. To assess other pharmacologic properties, select compounds were orally administered to normal or castor oil-treated rats, blood and tissue samples collected at multiple time points, and active compound concentrations determined by mass spectroscopy. NEP enzyme activity was measured in tissue homogenates. Three previously untested clinical NEP inhibitors delayed diarrhea onset and reduced total stool output, with little or no effect on intestinal motility assessed by the charcoal meal test. Each was shown to be a potent, highly specific inhibitor of NEP. Each exhibited greater suppression of NEP activity in intestinal and nonintestinal tissues than did racecadotril and sustained this inhibition longer. These results suggest that newer clinical-stage NEP inhibitors originally developed for other indications may be directly repositioned for treatment of acute secretory diarrhea and offer advantages over racecadotril, such as less frequent dosing and potentially improved efficacy.


Subject(s)
Antidiarrheals/therapeutic use , Diarrhea/drug therapy , Endopeptidases/metabolism , Protease Inhibitors/therapeutic use , Thiorphan/analogs & derivatives , Animals , Castor Oil , Charcoal/pharmacology , Diarrhea/chemically induced , Dose-Response Relationship, Drug , Feces , Gastrointestinal Motility/drug effects , Male , Rats , Rats, Wistar , Thiorphan/therapeutic use
6.
Cell Mol Gastroenterol Hepatol ; 2(4): 499-518, 2016 Jul.
Article in English | MEDLINE | ID: mdl-28174730

ABSTRACT

BACKGROUND & AIMS: Pancreatic stellate cells (PSCs) regulate the development of chronic pancreatitis (CP) and are activated by the cytokine transforming growth factor ß (TGFB). Integrins of the αv family promote TGFB signaling in mice, probably by interacting with the Arg-Gly-Asp (RGD) sequence of the TGFB latency-associated peptide, which frees TGFB to bind its cellular receptors. However, little is known about the role of integrins in the development of CP. We investigated the effects of small-molecule integrin inhibitors in a mouse model of CP. METHODS: We induced CP in C57BL/6 female mice by repeated cerulein administration. An active RGD peptidomimetic compound (Center for World Health and Medicine [CWHM]-12) was delivered by continuous infusion, starting 3 days before or 5 days after cerulein administration began. Pancreata were collected and parenchymal atrophy, fibrosis, and activation of PSCs were assessed by histologic, gene, and protein expression analyses. We measured CWHM-12 effects on activation of TGFB in co-culture assays in which rat PSC cells (large T immortalized cells [LTC-14]) activate expression of a TGFB-sensitive promoter in reporter cells. RESULTS: Pancreatic tissues of mice expressed messenger RNAs encoding subunits of RGD-binding integrins. Cerulein administration increased expression of these integrins, altered pancreatic cell morphology, and induced fibrosis. The integrin inhibitor CWHM-12 decreased acinar cell atrophy and loss, and substantially reduced fibrosis, activation of PSCs, and expression of genes regulated by TGFB. CWHM-12 also reduced established fibrosis in mice and blocked activation of TGFB in cultured cells. CONCLUSIONS: Based on studies of a mouse model of CP and cultured PSCs, integrins that bind RGD sequences activate PSCs and promote the development of pancreatic fibrogenesis in mice. Small-molecule antagonists of this interaction might be developed for treatment of pancreatic fibrotic diseases.

7.
Bioorg Med Chem ; 23(16): 5144-50, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25797165

ABSTRACT

Given the rise of parasite resistance to all currently used antimalarial drugs, the identification of novel chemotypes with unique mechanisms of action is of paramount importance. Since Plasmodium expresses a number of aspartic proteases necessary for its survival, we have mined antimalarial datasets for drug-like aspartic protease inhibitors. This effort led to the identification of spiropiperidine hydantoins, bearing similarity to known inhibitors of the human aspartic protease ß-secretase (BACE), as new leads for antimalarial drug discovery. Spiropiperidine hydantoins have a dynamic structure-activity relationship profile with positions identified as being tolerant of a variety of substitution patterns as well as a key piperidine N-benzyl phenol pharmacophore. Lead compounds 4e (CWHM-123) and 12k (CWHM-505) are potent antimalarials with IC50 values against Plasmodium falciparum 3D7 of 0.310 µM and 0.099 µM, respectively, and the former features equivalent potency on the chloroquine-resistant Dd2 strain. Remarkably, these compounds do not inhibit human aspartic proteases BACE, cathepsins D and E, or Plasmodium plasmepsins II and IV despite their similarity to known BACE inhibitors. Although the current leads suffer from poor metabolic stability, they do fit into a drug-like chemical property space and provide a new class of potent antimalarial agents for further study.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Hydantoins/chemistry , Hydantoins/pharmacology , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Animals , Antimalarials/metabolism , Antimalarials/pharmacokinetics , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Drug Discovery , Humans , Hydantoins/metabolism , Hydantoins/pharmacokinetics , Malaria, Falciparum/parasitology , Mice , Microsomes, Liver/metabolism , Piperidines/chemistry , Piperidines/metabolism , Piperidines/pharmacokinetics , Piperidines/pharmacology , Plasmodium falciparum/enzymology , Plasmodium falciparum/metabolism , Rats , Spiro Compounds/chemistry , Spiro Compounds/metabolism , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology
8.
ACS Med Chem Lett ; 5(1): 89-93, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24900778

ABSTRACT

Given the threat of drug resistance, there is an acute need for new classes of antimalarial agents that act via a unique mechanism of action relative to currently used drugs. We have identified a set of druglike compounds within the Tres Cantos Anti-Malarial Set (TCAMS) which likely act via inhibition of a Plasmodium aspartic protease. Structure-activity relationship analysis and optimization of these aminohydantoins demonstrate that these compounds are potent nanomolar inhibitors of the Plasmodium aspartic proteases PM-II and PM-IV and likely one or more other Plasmodium aspartic proteases. Incorporation of a bulky group, such as a cyclohexyl group, on the aminohydantion N-3 position gives enhanced antimalarial potency while reducing inhibition of human aspartic proteases such as BACE. We have identified compound 8p (CWHM-117) as a promising lead for optimization as an antimalarial drug with a low molecular weight, modest lipophilicity, oral bioavailability, and in vivo antimalarial activity in mice.

9.
J Robot Surg ; 8(3): 255-60, 2014 Sep.
Article in English | MEDLINE | ID: mdl-27637687

ABSTRACT

Application of energy in minimally invasive hysterectomy creates thermal injury which may increase vaginal cuff dehiscence. The purpose of this study was to compare vaginal tissue damage in a swine model between the two power settings of ultrasonic energy. This was an IACUC-approved, prospective, single-blinded study analyzing energy-induced damage to the swine vagina during robotic hysterectomy. Multiple colpotomy transections were performed on 18 animals using robotic ultrasonic energy, the exact same platform used in human surgery. Specimens (n = 72) were analyzed by a veterinary pathologist blinded to the energy source. Thermal injury was microscopically measured. Mean thermal injury (µm) was not statistically different between Max-Setting 5 and Min-Setting 3 (1243 ± 544 vs. 1293 ± 554; 95 % CI -310 to 210, p = 0.66). Time (s) to complete transection was significantly shorter when using Setting 5 (13.00 ± 7.75 vs. 17.92 ± 9.03; 95 % CI -4.92 to -8.88, p = 0.001). The rate of injury (µm/s) for Setting 5 also trended toward being higher (118.98 ± 72.81 vs. 93.03 ± 62.34; 95 % CI -5.91 to 57.81, p = 0.053). In these swine vaginal specimens, energy-induced tissue damage was not statistically different for the two ultrasonic power settings. Max-Setting 5 was faster and trended toward a higher rate of damage; this was balanced by equivalent distance of tissue injury compared with Min-Setting 3. In larger human specimens, the use of Max-Setting 5 may be recommended to decrease surgical time as it is faster and causes an equivalent amount of injury to Min-Setting 3.

SELECTION OF CITATIONS
SEARCH DETAIL
...