Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Mol Syst Biol ; 20(4): 321-337, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38365956

ABSTRACT

Adult stem cells are important for tissue turnover and regeneration. However, in most adult systems it remains elusive how stem cells assume different functional states and support spatially patterned tissue architecture. Here, we dissected the diversity of neural stem cells in the adult zebrafish brain, an organ that is characterized by pronounced zonation and high regenerative capacity. We combined single-cell transcriptomics of dissected brain regions with massively parallel lineage tracing and in vivo RNA metabolic labeling to analyze the regulation of neural stem cells in space and time. We detected a large diversity of neural stem cells, with some subtypes being restricted to a single brain region, while others were found globally across the brain. Global stem cell states are linked to neurogenic differentiation, with different states being involved in proliferative and non-proliferative differentiation. Our work reveals principles of adult stem cell organization and establishes a resource for the functional manipulation of neural stem cell subtypes.


Subject(s)
Adult Stem Cells , Neural Stem Cells , Animals , Zebrafish/physiology , Neural Stem Cells/metabolism , Neurogenesis , Brain , Cell Differentiation
2.
Cell Rep ; 42(1): 111979, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36640322

ABSTRACT

The role of MDC1 in the DNA damage response has been extensively studied; however, its impact on other cellular processes is not well understood. Here, we describe the role of MDC1 in transcription as a regulator of RNA polymerase II (RNAPII). Depletion of MDC1 causes a genome-wide reduction in the abundance of actively engaged RNAPII elongation complexes throughout the gene body of protein-encoding genes under unperturbed conditions. Decreased engaged RNAPII subsequently alters the assembly of the spliceosome complex on chromatin, leading to changes in pre-mRNA splicing. Mechanistically, the S/TQ domain of MDC1 modulates RNAPII-mediated transcription. Upon genotoxic stress, MDC1 promotes the abundance of engaged RNAPII complexes at DNA breaks, thereby stimulating nascent transcription at the damaged sites. Of clinical relevance, cancer cells lacking MDC1 display hypersensitivity to RNAPII inhibitors. Overall, we unveil a role of MDC1 in RNAPII-mediated transcription with potential implications for cancer treatment.


Subject(s)
RNA Polymerase II , RNA Splicing , DNA Damage , RNA Polymerase II/metabolism , Transcription, Genetic , Humans
3.
Mol Syst Biol ; 19(2): e11147, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36573354

ABSTRACT

Tissue dissociation, a crucial step in single-cell sample preparation, can alter the transcriptional state of a sample through the intrinsic cellular stress response. Here we demonstrate a general approach for measuring transcriptional response during sample preparation. In our method, transcripts made during dissociation are labeled for later identification upon sequencing. We found general as well as cell-type-specific dissociation response programs in zebrafish larvae, and we observed sample-to-sample variation in the dissociation response of mouse cardiomyocytes despite well-controlled experimental conditions. Finally, we showed that dissociation of the mouse hippocampus can lead to the artificial activation of microglia. In summary, our approach facilitates experimental optimization of dissociation procedures as well as computational removal of transcriptional perturbation response.


Subject(s)
RNA , Transcriptome , Mice , Animals , Zebrafish/genetics , Sequence Analysis, RNA/methods , Microglia , Single-Cell Analysis , Gene Expression Profiling/methods
4.
Development ; 149(2)2022 01 15.
Article in English | MEDLINE | ID: mdl-35088828

ABSTRACT

Regeneration-competent species possess the ability to reverse the progression of severe diseases by restoring the function of the damaged tissue. However, the cellular dynamics underlying this capability remain unexplored. Here, we have used single-cell transcriptomics to map de novo ß-cell regeneration during induction and recovery from diabetes in zebrafish. We show that the zebrafish has evolved two distinct types of somatostatin-producing δ-cells, which we term δ1- and δ2-cells. Moreover, we characterize a small population of glucose-responsive islet cells, which share the hormones and fate-determinants of both ß- and δ1-cells. The transcriptomic analysis of ß-cell regeneration reveals that ß/δ hybrid cells provide a prominent source of insulin expression during diabetes recovery. Using in vivo calcium imaging and cell tracking, we further show that the hybrid cells form de novo and acquire glucose-responsiveness in the course of regeneration. The overexpression of dkk3, a gene enriched in hybrid cells, increases their formation in the absence of ß-cell injury. Finally, interspecies comparison shows that plastic δ1-cells are partially related to PP cells in the human pancreas. Our work provides an atlas of ß-cell regeneration and indicates that the rapid formation of glucose-responsive hybrid cells contributes to the resolution of diabetes in zebrafish.


Subject(s)
Diabetes Mellitus/metabolism , Insulin-Secreting Cells/cytology , Regeneration , Somatostatin-Secreting Cells/cytology , Animals , Calcium/metabolism , Diabetes Mellitus/pathology , Glucose/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Single-Cell Analysis , Somatostatin-Secreting Cells/metabolism , Zebrafish
5.
Cell Rep ; 34(2): 108606, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33440143

ABSTRACT

Embryonic development seemingly proceeds with almost perfect precision. However, it is largely unknown how much underlying microscopic variability is compatible with normal development. Here, we quantify embryo-to-embryo variability in vertebrate development by studying cell number variation in the zebrafish endoderm. We notice that the size of a sub-population of the endoderm, the dorsal forerunner cells (DFCs, which later form the left-right organizer), exhibits significantly more embryo-to-embryo variation than the rest of the endoderm. We find that, with incubation of the embryos at elevated temperature, the frequency of left-right laterality defects is increased drastically in embryos with a low number of DFCs. Furthermore, we observe that these fluctuations have a large stochastic component among fish of the same genetic background. Hence, a stochastic variation in early development leads to a remarkably strong macroscopic phenotype. These fluctuations appear to be associated with maternal effects in the specification of the DFCs.


Subject(s)
Embryo, Nonmammalian/embryology , Zebrafish Proteins/metabolism , Animals , Phenotype , Zebrafish
6.
Int J Biochem Cell Biol ; 122: 105745, 2020 05.
Article in English | MEDLINE | ID: mdl-32283227

ABSTRACT

Single cell transcriptomics has emerged as a powerful method for dissecting cell type diversity and for understanding mechanisms of cell fate decisions. However, inclusion of temporal information remains challenging, since each cell can be measured only once by sequencing analysis. Here, we discuss recent progress and current efforts towards inclusion of temporal information in single cell transcriptomics. Even from snapshot data, temporal dynamics can be computationally inferred via pseudo-temporal ordering of single cell transcriptomes. Temporal information can also come from analysis of intronic reads or from RNA metabolic labeling, which can provide additional evidence for pseudo-time trajectories and enable more fine-grained analysis of gene regulatory interactions. These approaches measure dynamics on short timescales of hours. Emerging methods for high-throughput lineage tracing now enable information storage over long timescales by using CRISPR/Cas9 to record information in the genome, which can later be read out by sequencing.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Single-Cell Analysis/methods , Transcriptome/genetics , Cell Differentiation , Humans
7.
Nat Biotechnol ; 36(5): 469-473, 2018 06.
Article in English | MEDLINE | ID: mdl-29644996

ABSTRACT

A key goal of developmental biology is to understand how a single cell is transformed into a full-grown organism comprising many different cell types. Single-cell RNA-sequencing (scRNA-seq) is commonly used to identify cell types in a tissue or organ. However, organizing the resulting taxonomy of cell types into lineage trees to understand the developmental origin of cells remains challenging. Here we present LINNAEUS (lineage tracing by nuclease-activated editing of ubiquitous sequences)-a strategy for simultaneous lineage tracing and transcriptome profiling in thousands of single cells. By combining scRNA-seq with computational analysis of lineage barcodes, generated by genome editing of transgenic reporter genes, we reconstruct developmental lineage trees in zebrafish larvae, and in heart, liver, pancreas, and telencephalon of adult fish. LINNAEUS provides a systematic approach for tracing the origin of novel cell types, or known cell types under different conditions.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing , Transcriptome/genetics , Zebrafish/genetics , Animals , Cell Lineage/genetics , Cell Tracking/methods , Computational Biology/methods , Genetic Engineering , Heart/growth & development , High-Throughput Nucleotide Sequencing/methods , Liver/growth & development , Liver/metabolism , Pancreas/growth & development , Pancreas/metabolism , Single-Cell Analysis/methods , Telencephalon/growth & development , Telencephalon/metabolism , Zebrafish/growth & development , Zebrafish/metabolism
8.
Nature ; 540(7632): 296-300, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27919068

ABSTRACT

Chromosomes are folded into highly compacted structures to accommodate physical constraints within nuclei and to regulate access to genomic information. Recently, global mapping of pairwise contacts showed that loops anchoring topological domains (TADs) are highly conserved between cell types and species. Whether pairwise loops synergize to form higher-order structures is still unclear. Here we develop a conformation capture assay to study higher-order organization using chromosomal walks (C-walks) that link multiple genomic loci together into proximity chains in human and mouse cells. This approach captures chromosomal structure at varying scales. Inter-chromosomal contacts constitute only 7-10% of the pairs and are restricted by interfacing TADs. About half of the C-walks stay within one chromosome, and almost half of those are restricted to intra-TAD spaces. C-walks that couple 2-4 TADs indicate stochastic associations between transcriptionally active, early replicating loci. Targeted analysis of thousands of 3-walks anchored at highly expressed genes support pairwise, rather than hub-like, chromosomal topology at active loci. Polycomb-repressed Hox domains are shown by the same approach to enrich for synergistic hubs. Together, the data indicate that chromosomal territories, TADs, and intra-TAD loops are primarily driven by nested, possibly dynamic, pairwise contacts.


Subject(s)
Chromosome Walking , Chromosomes/chemistry , Chromosomes/genetics , Genetic Loci , Nucleic Acid Conformation , Animals , Chromatin/chemistry , Chromatin/genetics , Gene Expression Regulation , Genes, Homeobox , Genetic Loci/genetics , Humans , Imaging, Three-Dimensional , Mice , Polycomb-Group Proteins/metabolism , Stochastic Processes , Transcription, Genetic
9.
Nat Methods ; 13(8): 685-91, 2016 08.
Article in English | MEDLINE | ID: mdl-27376768

ABSTRACT

We developed a targeted chromosome conformation capture (4C) approach that uses unique molecular identifiers (UMIs) to derive high-complexity quantitative chromosome contact profiles with controlled signal-to-noise ratios. UMI-4C detects chromosomal interactions with improved sensitivity and specificity, and it can easily be multiplexed to allow robust comparison of contact distributions between loci and conditions. This approach may open the way to the incorporation of contact distributions into quantitative models of gene regulation.


Subject(s)
Chromosome Mapping/methods , Chromosomes, Human/chemistry , Chromosomes, Human/metabolism , Gene Expression Regulation , Genomics/methods , Leukemia/genetics , Chromatin/genetics , Data Interpretation, Statistical , Genetic Loci , High-Throughput Nucleotide Sequencing , Humans , Nucleic Acid Conformation , Signal-To-Noise Ratio , Software , Tumor Cells, Cultured , beta-Globins/genetics
10.
Methods ; 57(2): 140-8, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22683305

ABSTRACT

The precise regulation of DNA replication is fundamental to the preservation of intact genomes during cell proliferation. Our understanding of this process has been based traditionally on a combination of techniques including biochemistry, molecular biology and cell biology. In this report we describe how the analysis of the S phase in mammalian cells using classical cell biology techniques has contributed to our understanding of the replication process. We describe traditional and state-of-the-art protocols for imaging sites of DNA synthesis in nuclei and the organisation of active replicons along DNA, as visualised on individual DNA fibres. We evaluate how the different approaches inform our understanding of the replication process, placing particular emphasis on ways in which the higher order chromatin structures and the spatial architecture of replication sites contribute to the orderly activation of defined regions of the genome at precise times of S phase.


Subject(s)
Chromosomes , DNA Replication , DNA/genetics , Replicon , Animals , DNA/biosynthesis , DNA/chemistry , Fixatives/chemistry , Fluorescent Antibody Technique, Indirect , Formaldehyde/chemistry , HeLa Cells , Humans , Microscopy, Confocal , Microscopy, Fluorescence , Microscopy, Immunoelectron , Polymers/chemistry , S Phase Cell Cycle Checkpoints , Single-Cell Analysis , Staining and Labeling , Tissue Fixation
11.
PLoS One ; 6(12): e27527, 2011.
Article in English | MEDLINE | ID: mdl-22205925

ABSTRACT

The distribution of chromatin within the mammalian nucleus is constrained by its organization into chromosome territories (CTs). However, recent studies have suggested that promiscuous intra- and inter-chromosomal interactions play fundamental roles in regulating chromatin function and so might define the spatial integrity of CTs. In order to test the extent of DNA mixing between CTs, DNA foci of individual CTs were labeled in living cells following incorporation of Alexa-488 and Cy-3 conjugated replication precursor analogues during consecutive cell cycles. Uniquely labeled chromatin domains, resolved following random mitotic segregation, were visualized as discrete structures with defined borders. At the level of resolution analysed, evidence for mixing of chromatin from adjacent domains was only apparent within the surface volumes where neighboring CTs touched. However, while less than 1% of the nuclear volume represented domains of inter-chromosomal mixing, the dynamic plasticity of DNA foci within individual CTs allows continual transformation of CT structure so that different domains of chromatin mixing evolve over time. Notably, chromatin mixing at the boundaries of adjacent CTs had little impact on the innate structural properties of DNA foci. However, when TSA was used to alter the extent of histone acetylation changes in chromatin correlated with increased chromatin mixing. We propose that DNA foci maintain a structural integrity that restricts widespread mixing of DNA and discuss how the potential to dynamically remodel genome organization might alter during cell differentiation.


Subject(s)
Chromosomes/genetics , Chromosomes/metabolism , DNA/genetics , DNA/metabolism , Cell Survival , Chromatin/genetics , Chromatin/metabolism , HeLa Cells , Humans , Staining and Labeling
12.
PLoS Genet ; 6(4): e1000900, 2010 Apr 08.
Article in English | MEDLINE | ID: mdl-20386742

ABSTRACT

DNA synthesis must be performed with extreme precision to maintain genomic integrity. In mammalian cells, different genomic regions are replicated at defined times, perhaps to preserve epigenetic information and cell differentiation status. However, the molecular principles that define this S phase program are unknown. By analyzing replication foci within discrete chromosome territories during interphase, we show that foci which are active during consecutive intervals of S phase are maintained as spatially adjacent neighbors throughout the cell cycle. Using extended DNA fibers, we demonstrate that this spatial continuity of replication foci correlates with the genetic continuity of adjacent replicon clusters along chromosomes. Finally, we used bioinformatic tools to compare the structure of DNA foci with DNA domains that are seen to replicate during discrete time intervals of S phase using genome-wide strategies. Data presented show that a major mechanism of S phase progression involves the sequential synthesis of regions of the genome because of their genetic continuity along the chromosomal fiber.


Subject(s)
DNA Replication , DNA/chemistry , S Phase , Chromosomes, Human , DNA/metabolism , Fluorescent Antibody Technique , HeLa Cells , Humans , Models, Genetic , Replicon
13.
Chromosome Res ; 18(1): 163-78, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20155315

ABSTRACT

The control of DNA replication is of fundamental importance as cell proliferation demands that identical copies of the genetic material are passed to the two daughter cells that form during mitosis. These genetic copies are generated in the preceding S phase, where the entire DNA complement of the mother cell must be copied exactly once. As part of this process, it is known that different regions of mammalian genomes are replicated at specific times of a temporally defined replication programme. The key feature of this programme is that active genes in euchromatin are replicated before inactive ones in heterochromatin. This separation of S phase into periods where different classes of chromatin are duplicated is important in maintaining changes in gene expression that define individual cell types. Recent attempts to understand the structure of the S-phase timing programme have focused on the use of genome-wide strategies that inevitably use DNA isolated from large cell populations for analysis. However, this approach provides a composite view of events that occur within a population without knowledge of the cell-to-cell variability across the population. In this review, we attempt to combine information generated using genome-wide and single cell strategies in order to develop a coherent molecular understanding of S-phase progression. During this integration, we have explored how available information can be introduced into a modelling environment that best describes S-phase progression in mammalian cells.


Subject(s)
Cell Nucleus/metabolism , S Phase , Animals , Chromatin/metabolism , DNA/metabolism , DNA Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...