Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Med (Lausanne) ; 10: 1209425, 2023.
Article in English | MEDLINE | ID: mdl-37502358

ABSTRACT

Introduction: The ubiquitin-proteasome system (UPS) is an intracellular organelle responsible for targeted protein degradation, which represents a standard therapeutic target for many different human malignancies. Bortezomib, a reversible inhibitor of chymotrypsin-like proteasome activity, was first approved by the FDA in 2003 to treat multiple myeloma and is now used to treat a number of different cancers, including relapsed mantle cell lymphoma, diffuse large B-cell lymphoma, colorectal cancer, and thyroid carcinoma. Despite the success, bortezomib and other proteasome inhibitors are subject to severe side effects, and ultimately, drug resistance. We recently reported an oncogenic role for non-ATPase members of the 19S proteasome in chronic myeloid leukemia (CML), acute myeloid leukemia (AML), and several different solid tumors. In the present study, we hypothesized that ATPase members of the 19S proteasome would also serve as biomarkers and putative therapeutic targets in AML and multiple other cancers. Methods: We used data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) available at UALCAN and/or GEPIA2 to assess the expression and prognostic value of proteasome 26S subunit, ATPases 1-6 (PSMC1-6) of the 19S proteasome in cancer. UALCAN was also used to associate PSMC1-6 mRNA expression with distinct clinicopathological features. Finally, cBioPortal was employed to assess genomic alterations of PSMC genes across different cancer types. Results: The mRNA and protein expression of PSMC1-6 of the 19S proteasome were elevated in several cancers compared with normal controls, which often correlated with worse overall survival. In contrast, AML patients demonstrated reduced expression of these proteasome subunits compared with normal mononuclear cells. However, AML patients with high expression of PSMC2-5 had worse outcomes. Discussion: Altogether, our data suggest that components of the 19S proteasome could serve as prognostic biomarkers and novel therapeutic targets in AML and several other human malignancies.

3.
Int J Mol Sci ; 23(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36498916

ABSTRACT

26S proteasome non-ATPase subunits 1 (PSMD1) and 3 (PSMD3) were recently identified as prognostic biomarkers and potential therapeutic targets in chronic myeloid leukemia (CML) and multiple solid tumors. In the present study, we analyzed the expression of 19S proteasome subunits in acute myeloid leukemia (AML) patients with mutations in the FMS-like tyrosine kinase 3 (FLT3) gene and assessed their impact on overall survival (OS). High levels of PSMD3 but not PSMD1 expression correlated with a worse OS in FLT3-mutated AML. Consistent with an oncogenic role for PSMD3 in AML, shRNA-mediated PSMD3 knockdown impaired colony formation of FLT3+ AML cell lines, which correlated with increased OS in xenograft models. While PSMD3 regulated nuclear factor-kappa B (NF-κB) transcriptional activity in CML, we did not observe similar effects in FLT3+ AML cells. Rather, proteomics analyses suggested a role for PSMD3 in neutrophil degranulation and energy metabolism. Finally, we identified additional PSMD subunits that are upregulated in AML patients with mutated versus wild-type FLT3, which correlated with worse outcomes. These findings suggest that different components of the 19S regulatory complex of the 26S proteasome can have indications for OS and may serve as prognostic biomarkers in AML and other types of cancers.


Subject(s)
Leukemia, Myeloid, Acute , fms-Like Tyrosine Kinase 3 , Humans , fms-Like Tyrosine Kinase 3/genetics , Proteasome Endopeptidase Complex/genetics , Prognosis , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Mutation , Oncogenes
4.
Clin Transl Med ; 12(12): e1146, 2022 12.
Article in English | MEDLINE | ID: mdl-36536477

ABSTRACT

Tyrosine kinase inhibitors (TKIs) targeting BCR::ABL1 have turned chronic myeloid leukaemia (CML) from a fatal disease into a manageable condition for most patients. Despite improved survival, targeting drug-resistant leukaemia stem cells (LSCs) remains a challenge for curative CML therapy. Aberrant lipid metabolism can have a large impact on membrane dynamics, cell survival and therapeutic responses in cancer. While ceramide and sphingolipid levels were previously correlated with TKI response in CML, the role of lipid metabolism in TKI resistance is not well understood. We have identified downregulation of a critical regulator of lipid metabolism, G0/G1 switch gene 2 (G0S2), in multiple scenarios of TKI resistance, including (1) BCR::ABL1 kinase-independent TKI resistance, (2) progression of CML from the chronic to the blast phase of the disease, and (3) in CML versus normal myeloid progenitors. Accordingly, CML patients with low G0S2 expression levels had a worse overall survival. G0S2 downregulation in CML was not a result of promoter hypermethylation or BCR::ABL1 kinase activity, but was rather due to transcriptional repression by MYC. Using CML cell lines, patient samples and G0s2 knockout (G0s2-/- ) mice, we demonstrate a tumour suppressor role for G0S2 in CML and TKI resistance. Our data suggest that reduced G0S2 protein expression in CML disrupts glycerophospholipid metabolism, correlating with a block of differentiation that renders CML cells resistant to therapy. Altogether, our data unravel a new role for G0S2 in regulating myeloid differentiation and TKI response in CML, and suggest that restoring G0S2 may have clinical utility.


Subject(s)
Cell Cycle Proteins , Drug Resistance, Neoplasm , Glycerophospholipids , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Animals , Mice , Disease Progression , Drug Resistance, Neoplasm/genetics , Fusion Proteins, bcr-abl/genetics , Genes, Switch , Glycerophospholipids/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Protein Kinase Inhibitors/therapeutic use , Humans , Cell Cycle Proteins/genetics
5.
Oncogene ; 40(15): 2697-2710, 2021 04.
Article in English | MEDLINE | ID: mdl-33712704

ABSTRACT

Tyrosine kinase inhibitors (TKIs) targeting BCR-ABL1 have revolutionized therapy for chronic myeloid leukemia (CML), paving the way for clinical development in other diseases. Despite success, targeting leukemic stem cells and overcoming drug resistance remain challenges for curative cancer therapy. To identify drivers of kinase-independent TKI resistance in CML, we performed genome-wide expression analyses on TKI-resistant versus sensitive CML cell lines, revealing a nuclear factor-kappa B (NF-κB) expression signature. Nucleocytoplasmic fractionation and luciferase reporter assays confirmed increased NF-κB activity in the nucleus of TKI-resistant versus sensitive CML cell lines and CD34+ patient samples. Two genes that were upregulated in TKI-resistant CML cells were proteasome 26S subunit, non-ATPases 1 (PSMD1) and 3 (PSMD3), both members of the 19S regulatory complex in the 26S proteasome. PSMD1 and PSMD3 were also identified as survival-critical genes in a published small hairpin RNA library screen of TKI resistance. We observed markedly higher levels of PSMD1 and PSMD3 mRNA in CML patients who had progressed to the blast phase compared with the chronic phase of the disease. Knockdown of PSMD1 or PSMD3 protein correlated with reduced survival and increased apoptosis in CML cells, but not in normal cord blood CD34+ progenitors. Luciferase reporter assays and immunoblot analyses demonstrated that PSMD1 and PSMD3 promote NF-κB protein expression in CML, and that signal transducer and activator of transcription 3 (STAT3) further activates NF-κB in scenarios of TKI resistance. Our data identify NF-κB as a transcriptional driver in TKI resistance, and implicate PSMD1 and PSMD3 as plausible therapeutic targets worthy of future investigation in CML and possibly other malignancies.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , NF-kappa B/metabolism , Proteasome Endopeptidase Complex/metabolism , Animals , Apoptosis/physiology , Drug Resistance, Neoplasm , Heterografts , Humans , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mice , Mice, Nude , NF-kappa B/genetics , Proteasome Endopeptidase Complex/genetics , Protein Kinase Inhibitors/pharmacology , Transcription, Genetic , Up-Regulation
6.
Cancer ; 127(7): 1068-1079, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33616915

ABSTRACT

BACKGROUND: The Texas/Chihuahua (US/Mexico) border is a medically underserved region with many reported barriers for health care access. Although Hispanic ethnicity is associated with health disparities for many different diseases, the population-based estimates of incidence and survival for patients with blood cancer along the border are unknown. The authors hypothesized that Hispanic ethnicity and border proximity is associated with poor blood cancer outcomes. METHODS: Data from the Texas Cancer Registry (1995-2016) were used to investigate the primary exposures of patient ethnicity (Hispanic vs non-Hispanic) and geographic location (border vs non-border). Other confounders and covariates included sex, age, year of diagnosis, rurality, insurance status, poverty indicators, and comorbidities. The Mantel-Haenszel method and Cox regression analyses were used to determine adjusted effects of ethnicity and border proximity on the relative risk (RR) and survival of patients with different blood cancer types. RESULTS: Hispanic patients were diagnosed at a younger age than non-Hispanic patients and presented with increased comorbidities. Whereas non-Hispanics had a higher incidence of developing blood cancer compared with Hispanics overall, Hispanics demonstrated a higher incidence of acute lymphoblastic leukemia (RR, 1.92; 95% CI, 1.79-2.08; P < .001) with worse outcomes. Hispanics from the Texas/Chihuahua border demonstrated a higher incidence of chronic myeloid leukemia (RR, 1.28; 95% CI, 1.07-1.51; P = .02) and acute myeloid leukemia (RR, 1.17; 95% CI, 1.04-1.33; P = .0009) compared with Hispanics living elsewhere in Texas. CONCLUSIONS: Hispanic ethnicity and border proximity were associated with a poor presentation and an adverse prognosis despite the younger age of diagnosis. Future studies should explore differences in disease biology and treatment strategies that could drive these regional disparities.


Subject(s)
Hematologic Diseases/ethnology , Hispanic or Latino , Medically Underserved Area , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Comorbidity , Female , Health Services Accessibility , Hematologic Diseases/epidemiology , Hematologic Diseases/mortality , Humans , Incidence , Insurance Coverage , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/epidemiology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/ethnology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality , Leukemia, Myeloid, Acute/epidemiology , Leukemia, Myeloid, Acute/ethnology , Leukemia, Myeloid, Acute/mortality , Leukemia, Promyelocytic, Acute/epidemiology , Leukemia, Promyelocytic, Acute/ethnology , Leukemia, Promyelocytic, Acute/mortality , Male , Mexico/ethnology , Middle Aged , Myelodysplastic Syndromes/epidemiology , Myelodysplastic Syndromes/ethnology , Myelodysplastic Syndromes/mortality , Myeloproliferative Disorders/epidemiology , Myeloproliferative Disorders/ethnology , Myeloproliferative Disorders/mortality , Poverty , Precursor Cell Lymphoblastic Leukemia-Lymphoma/epidemiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/ethnology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Registries , Regression Analysis , Rural Population , Sex Factors , Texas , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...