Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Cell Biol ; 222(7)2023 07 03.
Article in English | MEDLINE | ID: mdl-37115958

ABSTRACT

As the autophagosome forms, its membrane surface area expands rapidly, while its volume is kept low. Protein-mediated transfer of lipids from another organelle to the autophagosome likely drives this expansion, but as these lipids are only introduced into the cytoplasmic-facing leaflet of the organelle, full membrane growth also requires lipid scramblase activity. ATG9 harbors scramblase activity and is essential to autophagosome formation; however, whether ATG9 is integrated into mammalian autophagosomes remains unclear. Here we show that in the absence of lipid transport, ATG9 vesicles are already competent to collect proteins found on mature autophagosomes, including LC3-II. Further, we use styrene-maleic acid lipid particles to reveal the nanoscale organization of protein on LC3-II membranes; ATG9 and LC3-II are each fully integrated into expanding autophagosomes. The ratios of these two proteins at different stages of maturation demonstrate that ATG9 proteins are not continuously integrated, but rather are present on the seed vesicles only and become diluted in the expanding autophagosome membrane.


Subject(s)
Autophagosomes , Membrane Proteins , Animals , Autophagosomes/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Autophagy , Protein Transport , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Lipids , Mammals/metabolism
2.
Front Genet ; 11: 562594, 2020.
Article in English | MEDLINE | ID: mdl-33133148

ABSTRACT

Xiphophorus interspecies hybrids represent a valuable model system to study heritable tumorigenesis, and the only model system that exhibits both spontaneous and inducible tumors. Types of tumorigenesis depend on the specific pedigree of the parental species, X. maculatus, utilized to produce interspecies hybrids. Although the ancestors of the two currently used X. maculatus parental lines, Jp163 A and Jp163 B, were originally siblings produced by the same mother, backcross interspecies hybrid progeny between X. hellerii and X. maculatus Jp163 A develop spontaneous melanoma initiating at the dorsal fin due to segregation of an oncogene and a regulator encoded by the X. maculatus genome, while the backcross hybrid progeny with X. hellerii or X. couchianus and Jp163 B exhibit melanoma on the flanks of their bodies, especially after treatment with ultraviolet light. Therefore, dissecting the genetic differences between these two closely related lines may lead to better understanding of functional molecular differences associated with tumorigenic mechanisms. For this purpose, comparative genomic analyses were undertaken to establish genetic variants between these two X. maculatus lines. Surprisingly, given the heritage of these two fish lines, we found genetic variants are clustered together in select chromosomal regions. Among these variants are non-synonymous mutations located in 381 genes. The non-random distribution of genetic variants between these two may highlight ancestral chromosomal recombination patterns that became fixed during subsequent inbreeding. Employing comparative transcriptomics, we also determined differences in the skin transcriptional landscape between the two lines. The genetic differences observed are associated with pathways highlighting fundamental cellular functions including inter-cellular and microenvironment-cellular interactions, and DNA repair. These results collectively lead to the conclusion that diverged functional genetic baselines are present between Jp163 A and B strains. Further, disruption of these fixed genetic baselines in the hybrids may give rise to spontaneous or inducible mechanisms of tumorigenesis.

3.
J Biol Chem ; 295(39): 13584-13600, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32732290

ABSTRACT

During autophagy, LC3 and GABARAP proteins become covalently attached to phosphatidylethanolamine on the growing autophagosome. This attachment is also reversible. Deconjugation (or delipidation) involves the proteolytic cleavage of an isopeptide bond between LC3 or GABARAP and the phosphatidylethanolamine headgroup. This cleavage is carried about by the ATG4 family of proteases (ATG4A, B, C, and D). Many studies have established that ATG4B is the most active of these proteases and is sufficient for autophagy progression in simple cells. Here we examined the second most active protease, ATG4A, to map out key regulatory motifs on the protein and to establish its activity in cells. We utilized fully in vitro reconstitution systems in which we controlled the attachment of LC3/GABARAP members and discovered a role for a C-terminal LC3-interacting region on ATG4A in regulating its access to LC3/GABARAP. We then used a gene-edited cell line in which all four ATG4 proteases have been knocked out to establish that ATG4A is insufficient to support autophagy and is unable to support GABARAP proteins removal from the membrane. As a result, GABARAP proteins accumulate on membranes other than mature autophagosomes. These results suggest that to support efficient production and consumption of autophagosomes, additional factors are essential including possibly ATG4B itself or one of its proteolytic products in the LC3 family.


Subject(s)
Autophagy-Related Proteins/metabolism , Cysteine Endopeptidases/metabolism , Macroautophagy , Apoptosis Regulatory Proteins/metabolism , Autophagy-Related Proteins/genetics , Cysteine Endopeptidases/genetics , HEK293 Cells , Humans , Microtubule-Associated Proteins/metabolism
4.
ChemMedChem ; 14(3): 322-333, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30562414

ABSTRACT

Our laboratories have been investigating synthetic analogues of marine alkaloid rigidins that possess promising anticancer activities. These analogues, based on the 7-deazahypoxanthine skeleton, are available in one- or two-step synthetic sequences and exert cytotoxicity by disrupting microtubule dynamics in cancer cells. In the present work we extended the available structure-activity relationship (SAR) data to N3- and N9-substituted derivatives. Although N3 substitution results in loss of activity, the N9-substituted compounds retain nanomolar antiproliferative activities and the anti-tubulin mode of action of the original unsubstituted compounds. Furthermore, our results also demonstrate that multidrug-resistance (MDR) proteins do not confer resistance to both N9-unsubstituted and -substituted compounds. It was found that sublines overexpressing ABCG2, ABCC1, and ABCB1 proteins are as responsive to the rigidin analogues as their parental cell lines. Thus, the study reported herein provides further impetus to investigate the rigidin-inspired 7-deazahypoxanthines as promising anticancer agents.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Hypoxanthine/pharmacology , Microtubules/drug effects , Pyrimidines/pharmacology , Pyrroles/pharmacology , ATP Binding Cassette Transporter, Subfamily B/metabolism , Alkaloids/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dogs , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Hypoxanthine/chemical synthesis , Hypoxanthine/chemistry , MCF-7 Cells , Madin Darby Canine Kidney Cells/drug effects , Microtubules/metabolism , Molecular Structure , Pyrimidines/chemistry , Pyrroles/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL