ABSTRACT
The atmosphere of the Tula Industrial Corridor in Central Mexico is contaminated due to several industries including oil refining while station monitoring in this area are limited. Lanthanides are considered fingerprint of oil refinery activities, and La, Ce and Sm have been previously detected in this area using filters. The suitability of T. usneoides as a biomonitor assessing the La, Ce and Sm concentrations in Particulate Matter is evaluated by NAA. Results of both biomonitor and filters are highly correlated.
Subject(s)
Environmental Monitoring/methods , Industrial Waste/analysis , Particulate Matter/analysis , Tillandsia , Environmental Monitoring/instrumentation , Filtration , Humans , Mexico , Neutron Activation AnalysisABSTRACT
Inorganic pyrophosphatases are divided in two families, which differ both in structure and mechanism. All of them incorporate in its structure divalent metal cations. In 2003, it was reported for the first time that Rhodobacter capsulatus cytoplasmic pyrophosphatase belongs to family II. It is expected then, that this enzyme contains metal elements in its structure; however, this characterization has not been carried out yet. A fine application of accelerators is the use of proton beams to induce X-ray emission (PIXE) for analyzing the composition of biological macromolecules. The purpose of this work is to complement R. capsulatus cytoplasmic pyrophosphatase characterization by determining the presence of metal elements in its structure. Three different strategies were used: PAGE-PIXE, PAGE-Digestion-PIXE, and Dialysis-PIXE and when metals were found the metal/enzyme ratio was calculated. Only cobalt was found to be associated to the enzyme chemical structure in a ratio 3 Co/enzyme.