Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 15(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37513607

ABSTRACT

The Euterpe genus (mainly Euterpe oleracea Martius, Euterpe precatoria Martius, and Euterpe edulis Martius) has recently gained commercial and scientific notoriety due to the high nutritional value of its fruits, which are rich in polyphenols (phenolic acids and anthocyanins) and have potent antioxidant activity. These characteristics have contributed to the increased number of neuropharmacological evaluations of the three species over the last 10 years, especially açaí of the species Euterpe oleracea Martius. The fruits of the three species exert neuroprotective effects through the modulation of inflammatory and oxidative pathways and other mechanisms, including the inhibition of the mTOR pathway and protection of the blood-brain barrier, all of them intimately involved in several neuropathologies. Thus, a better understanding of the neuropharmacological properties of these three species may open new paths for the development of therapeutic tools aimed at preventing and treating a variety of neurological conditions.


Subject(s)
Euterpe , Anthocyanins , Neuroprotection , Antioxidants/pharmacology , Antioxidants/therapeutic use , Fruit , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
2.
Int J Mol Sci ; 23(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36293377

ABSTRACT

Hippocampus is the brain area where aluminum (Al) accumulates in abundance and is widely associated with learning and memory. In the present study, we evaluate behavioral, tissue, and proteomic changes in the hippocampus of Wistar rats caused by exposure to doses that mimic human consumption of aluminum chloride (AlCl3) in urban areas. For this, male Wistar rats were divided into two groups: Control (distilled water) and AlCl3 (8.3 mg/kg/day), both groups were exposed orally for 60 days. After the Al exposure protocol, cognitive functions were assessed by the Water maze test, followed by a collection for analysis of the global proteomic profile of the hippocampus by mass spectrometry. Aside from proteomic analysis, we performed a histological analysis of the hippocampus, to the determination of cell body density by cresyl violet staining in Cornu Ammonis fields (CA) 1 and 3, and hilus regions. Our results indicated that exposure to low doses of aluminum chloride triggered a decreased cognitive performance in learning and memory, being associated with the deregulation of proteins expression, mainly those related to the regulation of the cytoskeleton, cellular metabolism, mitochondrial activity, redox regulation, nervous system regulation, and synaptic signaling, reduced cell body density in CA1, CA3, and hilus.


Subject(s)
Aluminum , Proteomics , Humans , Rats , Male , Animals , Aluminum/toxicity , Aluminum/metabolism , Aluminum Chloride/toxicity , Rats, Wistar , Hippocampus/metabolism , Aluminum Compounds/toxicity
3.
Int J Mol Sci ; 23(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35328600

ABSTRACT

Stroke is one of the leading causes of death and long-term disabilities worldwide, resulting in a debilitating condition occasioned by disturbances in the cerebral vasculature. Primary damage due to metabolic collapse is a quick outcome following stroke, but a multitude of secondary events, including excitotoxicity, inflammatory response, and oxidative stress cause further cell death and functional impairment. In the present work, we investigated whether a primary ischemic damage into the dorsal striatum may cause secondary damage in the circumjacent corpus callosum (CC). Animals were injected with endothelin-1 and perfused at 3, 7, 14, and 30 post-lesion days (PLD). Sections were stained with Cresyl violet for basic histopathology and immunolabeled by antibodies against astrocytes (anti-GFAP), macrophages/microglia (anti-IBA1/anti MHC-II), oligodendrocytes (anti-TAU) and myelin (anti-MBP), and Anti-Nogo. There were conspicuous microgliosis and astrocytosis in the CC, followed by later oligodendrocyte death and myelin impairment. Our results suggest that secondary white matter damage in the CC follows a primary focal striatal ischemia in adult rats.


Subject(s)
Stroke , White Matter , Animals , Corpus Callosum/pathology , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Rats , Stroke/metabolism
4.
Oxid Med Cell Longev ; 2021: 5595047, 2021.
Article in English | MEDLINE | ID: mdl-34659634

ABSTRACT

Lead (Pb) is a toxic metal with great neurotoxic potential. The aim of this study was to investigate the effects of a long-term Pb intoxication on the global proteomic profile, oxidative biochemistry and neuronal density in motor cortex of adult rats, and the possible outcomes related to motor functions. For this, Wistar rats received for 55 days a dose of 50 mg/Kg of Pb acetate by intragastric gavage. Then, the motor abilities were evaluated by open field and inclined plane tests. To investigate the possible oxidative biochemistry modulation, the levels of pro-oxidant parameters as lipid peroxidation and nitrites were evaluated. The global proteomic profile was evaluated by ultraefficiency liquid chromatography system coupled with mass spectrometry (UPLC/MS) followed by bioinformatic analysis. Moreover, it was evaluated the mature neuron density by anti-NeuN immunostaining. The statistical analysis was performed through Student's t-test, considering p < 0.05. We observed oxidative stress triggering by the increase in malonaldehyde and nitrite levels in motor cortex. In the proteomic analysis, the motor cortex presented alterations in proteins associated with neural functioning, morphological organization, and neurodegenerative features. In addition, it was observed a decrease in the number of mature neurons. These findings, associated with previous evidences observed in spinal cord, cerebellum, and hippocampus under the same Pb administration protocol, corroborate with the motor deficits in the rats towards Pb. Thus, we conclude that the long-term administration to Pb in young Wistar rats triggers impairments at several organizational levels, such as biochemical and morphological, which resulted in poor motor performance.


Subject(s)
Lead/adverse effects , Motor Cortex/pathology , Neurodegenerative Diseases/chemically induced , Animals , Male , Oxidative Stress , Proteome/metabolism , Rats , Rats, Wistar
5.
Environ Sci Pollut Res Int ; 28(9): 10918-10930, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33105010

ABSTRACT

This study aimed to investigate the effects of lead (Pb) exposure on parotid and submandibular glands through morphological aspects as well as the systemic and salivary gland redox state. Male Wistar rats were exposed to 50 mg/kg/day of Pb-acetate or distilled water by intragastric gavage for 55 days (n = 40). Blood samples were used for lipid peroxidation (LPO), glutathione (GSH), and trolox equivalent antioxidant capacity (TEAC) assays. Samples of salivary glands were analyzed by LPO, nitrites (NO), and antioxidant capacity against peroxyl radicals (ACAP) levels. Morphometric analyses (total stromal area [TSA], total parenchyma area [TPA], total ductal area [TDA], and total acinar area [TAA]) and immunohistochemistry for cytokeratin-19 (CK-19), metallothionein I/II (MT I/II), and anti-smooth muscle actin (α-SMA) were performed. The results revealed that exposure to Pb triggered systemic oxidative stress represented by lower GSH levels and increased TBARS/TEAC ratio in blood plasma. ACAP was reduced, while NO and LPO were increased in both parotid and submandibular. The morphological analyses showed increase on MT I/II expression, reduced CK-19 expression in both glands, and α-SMA reduced the immunostaining only in the parotid glands. The morphometric analyses revealed an increase in TPA in both glands, while TAA was reduced only in submandibular glands and TDA was increased only in parotid glands. Our findings are pioneer in showing that long-term exposure to Pb is able to promote blood and glandular oxidative stress associated with cellular, morphological, and biochemical damage in both parotid and submandibular glands.


Subject(s)
Lead , Salivary Glands , Animals , Lead/metabolism , Male , Oxidation-Reduction , Oxidative Stress , Rats , Rats, Wistar , Salivary Glands/metabolism
6.
Ecotoxicol Environ Saf ; 194: 110358, 2020 May.
Article in English | MEDLINE | ID: mdl-32151863

ABSTRACT

Lead is a toxic metal found in environment with great neurotoxic potential. The main effect is associated with impairments in hippocampus and cerebellum, driving to cognitive and motor dysfunctions, however, there is a lack of evidences about the effects over the spinal cord. In this way, we aimed to investigate in vivo the effects of long-term exposure to lead acetate in oxidative biochemistry and morphology of rats' spinal cord. For this, 36 male Wistar rats (Rattus norvegicus) were divided into the group exposed to 50 mg/kg of lead acetate and control group, which received only distilled water, both groups through intragastric gavage, for 55 days. After the exposure period, the animals were euthanized and the spinal cords were collected to perform the analyses of lead levels quantification, oxidative biochemistry evaluation by levels of malondialdehyde (MDA), nitrites and the antioxidant capacity against peroxyl radicals (ACAP). Besides, morphological evaluation with quantitative analysis of mature and motor neurons and reactivity to myelin basic protein (MBP). Our results showed high levels of lead in spinal cord after long-term exposure; there was a reduction on ACAP level; however, there was no difference observed in MDA and nitrite levels. Moreover, there was a reduction of mature and motor neurons in all three regions, and a reduction of immunolabeling of MBP in the thoracic and lumbar segments. Therefore, we conclude that long-term exposure to lead is able of increasing the levels of the metal in spinal cord, affecting the antioxidant capacity and inducing morphological impairments in spinal cord parenchyma. Our results also suggest that the tissue impairments triggered by lead may be resultant from others molecular mechanisms besides the oxidative stress.


Subject(s)
Hazardous Substances/toxicity , Lead/toxicity , Animals , Antioxidants/metabolism , Demyelinating Diseases , Hippocampus/metabolism , Male , Malondialdehyde/metabolism , Motor Neurons , Myelin Basic Protein , Nitrites , Oxidation-Reduction , Oxidative Stress/drug effects , Peroxides , Rats , Rats, Wistar , Spinal Cord , Toxicity Tests
7.
Tissue Cell ; 55: 77-82, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30503063

ABSTRACT

Ethanol (EtOH) consumption is a risk factor for central nervous system damage, especially during adolescence. This study aimed to investigate the possible effects of chronic EtOH forced administration on gray and white matter of the spinal cord, from adolescence to adulthood. For this, male Wistar rats were administered EtOH by gavage (6.5 g/kg/day; 22.5% w/v) from the 35th to the 90th day of life, while control animals received only distilled water. After exposure, animals were euthanized and their spinal cords processed to obtain cervical and thoracic segments for histological analyses. Quantitative analyses of total cell density and motor neurons of white and gray matter from the ventral horns were evaluated. Forced EtOH administration model showed a decrease in the motoneuron density in the spinal cord in both segments evaluated. Analyses of total cell density showed that the cervical segment was more susceptible to damages promoted by EtOH, with a significant decrease in cell density. Our results showed that chronic EtOH exposure during adolescence could promote injuries to the spinal cord, with neurodegeneration of motoneurons and other cell types present in neural parenchyma.


Subject(s)
Alcohol Drinking/adverse effects , Cell Count , Ethanol/pharmacology , Motor Neurons/drug effects , Spinal Cord/drug effects , Animals , Cell Count/methods , Male , Motor Neurons/cytology , Rats, Wistar , Spinal Cord/cytology , Water , White Matter/drug effects , White Matter/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...