Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Clin Exp Allergy ; 52(2): 276-285, 2022 02.
Article in English | MEDLINE | ID: mdl-34854138

ABSTRACT

BACKGROUND: Quantifying major allergens is essential for evaluating the quality and efficacy of allergenic extracts. They are usually measured in non-polymerized extracts using immunoassays. However, the direct measurement of allergens in allergoids is currently not supported. This study set out to develop a method for quantifying Bet v 1 in polymerized birch extracts using mass spectrometry-based targeted analysis. METHODS: Three isotopically labelled peptide sequences of Bet v 1 were synthetized and used as internal standards for the development of a mass spectrometry-based targeted analysis. The calibration curves of the three peptides to assess the linearity and limit of detection, as well as reverse calibration curves with a constant amount of sample, were constructed. The Bet v 1 content was determined and measured in 18 batches of depigmented (native extracts purified by a mild acid treatment) and depigmented-polymerized extracts. RESULTS: Bet v 1 isoforms were identified in both type of extracts by mass spectrometry. According to mass spectrometry-targeted analysis depigmented and depigmented-polymerized extracts exhibited mean values of 70.5 and 73.5 µg Bet v 1/mg of lyophilized extract, respectively. A statistically significant correlation between the allergen content of both extracts was identified. Statistically significant differences were observed when the Bet v 1 content in non-polymerized extracts was measured via mass spectrometry (70.5 ± 11.6 µg/mg) or immunoassay (83.7 ± 19.8 µg/mg). CONCLUSIONS: These results represent the first direct quantification of Bet v 1 in allergoids using mass spectrometry-based targeted analysis. The proposed method demonstrates robustness and reliability and constitutes a promising alternative for detailed characterization of polymerized allergenic extracts.


Subject(s)
Antigens, Plant , Betula , Allergens , Humans , Mass Spectrometry , Plant Extracts , Plant Proteins , Pollen , Reproducibility of Results
2.
J Proteomics ; 251: 104409, 2022 01 16.
Article in English | MEDLINE | ID: mdl-34758407

ABSTRACT

Global analysis of protein phosphorylation by mass spectrometry proteomic techniques has emerged in the last decades as a powerful tool in biological and biomedical research. However, there are several factors that make the global study of the phosphoproteome more challenging than measuring non-modified proteins. The low stoichiometry of the phosphorylated species and the need to retrieve residue specific information require particular attention on sample preparation, data acquisition and processing to ensure reproducibility, qualitative and quantitative robustness and ample phosphoproteome coverage in phosphoproteomic workflows. Aiming to investigate the effect of different variables in the performance of proteome wide phosphoprotein analysis protocols, ProteoRed-ISCIII and EuPA launched the Proteomics Multicentric Experiment 11 (PME11). A reference sample consisting of a yeast protein extract spiked in with different amounts of a phosphomix standard (Sigma/Merck) was distributed to 31 laboratories around the globe. Thirty-six datasets from 23 laboratories were analyzed. Our results indicate the suitability of the PME11 reference sample to benchmark and optimize phosphoproteomics strategies, weighing the influence of different factors, as well as to rank intra and inter laboratory performance.


Subject(s)
Proteome , Proteomics , Laboratories , Phosphoproteins/analysis , Phosphorylation , Proteome/analysis , Proteomics/methods , Reference Standards , Reproducibility of Results
3.
J Clin Med ; 10(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34640372

ABSTRACT

Currently, there is no therapy targeting septic cardiomyopathy (SC), a key contributor to organ dysfunction in sepsis. In this study, we used a machine learning (ML) pipeline to explore transcriptomic, proteomic, and metabolomic data from patients with septic shock, and prospectively collected measurements of high-sensitive cardiac troponin and echocardiography. The purposes of the study were to suggest an exploratory methodology to identify and characterise the multiOMICs profile of (i) myocardial injury in patients with septic shock, and of (ii) cardiac dysfunction in patients with myocardial injury. The study included 27 adult patients admitted for septic shock. Peripheral blood samples for OMICS analysis and measurements of high-sensitive cardiac troponin T (hscTnT) were collected at two time points during the ICU stay. A ML-based study was designed and implemented to untangle the relations among the OMICS domains and the aforesaid biomarkers. The resulting ML pipeline consisted of two main experimental phases: recursive feature selection (FS) assessing the stability of biomarkers, and classification to characterise the multiOMICS profile of the target biomarkers. The application of a ML pipeline to circulate OMICS data in patients with septic shock has the potential to predict the risk of myocardial injury and the risk of cardiac dysfunction.

4.
Genome Med ; 13(1): 168, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702310

ABSTRACT

BACKGROUND: In spite of many years of research, our understanding of the molecular bases of Alzheimer's disease (AD) is still incomplete, and the medical treatments available mainly target the disease symptoms and are hardly effective. Indeed, the modulation of a single target (e.g., ß-secretase) has proven to be insufficient to significantly alter the physiopathology of the disease, and we should therefore move from gene-centric to systemic therapeutic strategies, where AD-related changes are modulated globally. METHODS: Here we present the complete characterization of three murine models of AD at different stages of the disease (i.e., onset, progression and advanced). We combined the cognitive assessment of these mice with histological analyses and full transcriptional and protein quantification profiling of the hippocampus. Additionally, we derived specific Aß-related molecular AD signatures and looked for drugs able to globally revert them. RESULTS: We found that AD models show accelerated aging and that factors specifically associated with Aß pathology are involved. We discovered a few proteins whose abundance increases with AD progression, while the corresponding transcript levels remain stable, and showed that at least two of them (i.e., lfit3 and Syt11) co-localize with Aß plaques in the brain. Finally, we found two NSAIDs (dexketoprofen and etodolac) and two anti-hypertensives (penbutolol and bendroflumethiazide) that overturn the cognitive impairment in AD mice while reducing Aß plaques in the hippocampus and partially restoring the physiological levels of AD signature genes to wild-type levels. CONCLUSIONS: The characterization of three AD mouse models at different disease stages provides an unprecedented view of AD pathology and how this differs from physiological aging. Moreover, our computational strategy to chemically revert AD signatures has shown that NSAID and anti-hypertensive drugs may still have an opportunity as anti-AD agents, challenging previous reports.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Proteomics/methods , Transcriptome , Aging , Amyloid beta-Peptides , Animals , Brain/metabolism , Cognitive Dysfunction , Disease Models, Animal , Drug Discovery , Female , Gene Expression Regulation, Neoplastic , Gene Knock-In Techniques , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plaque, Amyloid/metabolism
5.
Int J Mol Sci ; 22(14)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34299022

ABSTRACT

Neuronal cell adhesion molecule 2 (NCAM2) is a membrane protein with an important role in the morphological development of neurons. In the cortex and the hippocampus, NCAM2 is essential for proper neuronal differentiation, dendritic and axonal outgrowth and synapse formation. However, little is known about NCAM2 functional mechanisms and its interactive partners during brain development. Here we used mass spectrometry to study the molecular interactome of NCAM2 in the second postnatal week of the mouse cerebral cortex. We found that NCAM2 interacts with >100 proteins involved in numerous processes, including neuronal morphogenesis and synaptogenesis. We validated the most relevant interactors, including Neurofilaments (NEFs), Microtubule-associated protein 2 (MAP2), Calcium/calmodulin kinase II alpha (CaMKIIα), Actin and Nogo. An in silico analysis of the cytosolic tail of the NCAM2.1 isoform revealed specific phosphorylation site motifs with a putative affinity for some of these interactors. Our results expand the knowledge of NCAM2 interactome and confirm the key role of NCAM2 in cytoskeleton organization, neuronal morphogenesis and synaptogenesis. These findings are of interest in explaining the phenotypes observed in different pathologies with alterations in the NCAM2 gene.


Subject(s)
Cerebral Cortex/metabolism , Cytoskeleton/metabolism , Mass Spectrometry , Neural Cell Adhesion Molecules/metabolism , Neurogenesis , Neurons/metabolism , Actins/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cerebral Cortex/growth & development , Computational Biology , Cytoplasm/genetics , Cytoplasm/metabolism , Databases, Chemical , Gene Ontology , In Vitro Techniques , Intermediate Filaments/metabolism , Mice , Microtubule-Associated Proteins/metabolism , Neurogenesis/genetics , Nogo Proteins , Phosphorylation , Protein Domains , Protein Interaction Maps , Proteome/genetics , Proteome/metabolism , Transcriptome/genetics
6.
Environ Res ; 192: 110041, 2021 01.
Article in English | MEDLINE | ID: mdl-32949613

ABSTRACT

This study aimed to evaluate the response of HepaRG cells after co-exposure to phthalates and heavy metals, using a high-dimensional biology paradigm (HDB). Liver is the main metabolism site for the majority of xenobiotics. For this reason, the HepaRG cell line was used as an in vitro model, and cells were exposed to two characteristic mixtures of phthalates and heavy metals containing phthalates (DEHP, DiNP, BBzP) and metals (lead, methylmercury, total mercury) in a concentration-dependent manner. The applied chemical mixtures were selected as the most abundant pollutants in the REPRO_PL and PHIME cohorts, which were studied using the exposome-wide approach in the frame of the EU project HEALS. These studies investigated the environmental causation of neurodevelopmental disorders in neonates and across Europe. The INTEGRA computational platform was used for the calculation of the effective concentrations of the chemicals in the liver through extrapolation from human biomonitoring data and this dose (and a ten-times higher one) was applied to the hepatocyte model. Multi-omics analysis was performed to reveal the genes, proteins, and metabolites affected by the exposure to these chemical mixtures. By extension, we could detect the perturbed metabolic pathways. The generated data were analyzed using advanced bioinformatic tools following the HEALS connectivity paradigm for multi-omics pathway analysis. Co-mapped transcriptomics and proteomics data showed that co-exposure to phthalates and heavy metals leads to perturbations of the urea cycle due to differential expression levels of arginase-1 and -2, argininosuccinate synthase, carbamoyl-phosphate synthase, ornithine carbamoyltransferase, and argininosuccinate lyase. Joint pathway analysis of proteomics and metabolomics data revealed that the detected proteins and metabolites, choline phosphate cytidylyltransferase A, phospholipase D3, group XIIA secretory phospholipase A2, α-phosphatidylcholine, and the a 1,2-diacyl-sn-glycero-3-phosphocholine, are responsible for the homeostasis of the metabolic pathways phosphatidylcholine biosynthesis I, and phospholipases metabolism. The urea, phosphatidylcholine biosynthesis I and phospholipase metabolic pathways are of particular interest since they have been identified also in human samples from the REPRO_PL and PHIME cohorts using untargeted metabolomics analysis and have been associated with impaired psychomotor development in children at the age of two. In conclusion, this study provides the mechanistic evidence that co-exposure to phthalates and metals disturb biochemical processes related to mitochondrial respiration during critical developmental stages, which are clinically linked to neurodevelopmental perturbations.


Subject(s)
Biochemical Phenomena , Environmental Pollutants , Phthalic Acids , Child , Choline , Europe , Humans , Infant, Newborn , Phthalic Acids/toxicity , Urea
7.
Molecules ; 23(11)2018 Nov 11.
Article in English | MEDLINE | ID: mdl-30423858

ABSTRACT

Amphibians´ skin produces a diverse array of antimicrobial peptides that play a crucial role as the first line of defense against microbial invasion. Despite the immense richness of wild amphibians in Argentina, current knowledge about the presence of peptides with antimicrobial properties is limited to a only few species. Here we used LC-MS-MS to identify antimicrobial peptides with masses ranging from 1000 to 4000 Da from samples of skin secretions of Leptodactylus latrans (Anura: Leptodactylidae). Three novel amino acid sequences were selected for chemical synthesis and further studies. The three synthetic peptides, named P1-Ll-1577, P2-Ll-1298, and P3-Ll-2085, inhibited the growth of two ATCC strains, namely Escherichia coli and Staphylococcus aureus. P3-Ll-2085 was the most active peptide. In the presence of trifluoroethanol (TFE) and anionic liposomes, it adopted an amphipathic α-helical structure. P2-Ll-1298 showed slightly lower activity than P3-Ll-2085. Comparison of the MIC values of these two peptides revealed that the addition of seven amino acid residues (GLLDFLK) on the N-terminal of P2-Ll-1298 significantly improved activity against both strains. P1-Ll-1577, which remarkably is an anionic peptide, showed interesting antimicrobial activity against E. coli and S. aureus strain, showing marked membrane selectivity and non-hemolysis. Due to this, P1-L1-1577 emerges as a potential candidate for the development of new antibacterial drugs.


Subject(s)
Antimicrobial Cationic Peptides/isolation & purification , Antimicrobial Cationic Peptides/pharmacology , Anura/metabolism , Skin/metabolism , Animals , Antimicrobial Cationic Peptides/analysis , Antimicrobial Cationic Peptides/chemical synthesis , Chromatography, High Pressure Liquid , Circular Dichroism , Hemolysis , Solid-Phase Synthesis Techniques , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry
8.
PLoS One ; 13(10): e0205878, 2018.
Article in English | MEDLINE | ID: mdl-30379953

ABSTRACT

Hutchinson-Gilford progeria syndrome (HGPS) is a very rare fatal disease characterized for accelerated aging. Although the causal agent, a point mutation in LMNA gene, was identified more than a decade ago, the molecular mechanisms underlying HGPS are still not fully understood and, currently, there is no cure for the patients, which die at a mean age of thirteen. With the aim of unraveling non-previously altered molecular pathways in the premature aging process, human cell lines from HGPS patients and from healthy parental controls were studied in parallel using Next-Generation Sequencing (RNAseq) and High-Resolution Quantitative Proteomics (iTRAQ) techniques. After selection of significant proteins and transcripts and crosschecking of the results a small set of protein/transcript pairs were chosen for validation. One of those proteins, ribose-phosphate pyrophosphokinase 1 (PRPS1), is essential for nucleotide synthesis. PRPS1 loss-of-function mutants present lower levels of purine. PRPS1 protein and transcript levels are detected as significantly decreased in HGPS cell lines vs. healthy parental controls. This modulation was orthogonally confirmed by targeted techniques in cell lines and also in an animal model of Progeria, the ZMPSTE24 knock-out mouse. In addition, functional experiments through supplementation with S-adenosyl-methionine (SAMe), a metabolite that is an alternative source of purine, were done. Results indicate that SAMe has a positive effect in the proliferative capacity and reduces senescence-associated Beta-galactosidase staining of the HPGS cell lines. Altogether, our data suggests that nucleotide and, specifically, purine-metabolism, are altered in premature aging, opening a new window for the therapeutic treatment of the disease.


Subject(s)
Lamin Type A/genetics , Progeria/genetics , Purines/metabolism , RNA, Messenger/genetics , Ribose-Phosphate Pyrophosphokinase/genetics , Adult , Animals , Cell Line , Cell Proliferation , Child , Computational Biology/methods , Disease Models, Animal , Female , Founder Effect , Gene Expression Profiling , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Lamin Type A/deficiency , Membrane Proteins/deficiency , Membrane Proteins/genetics , Metalloendopeptidases/deficiency , Metalloendopeptidases/genetics , Mice , Mice, Knockout , Progeria/drug therapy , Progeria/metabolism , Progeria/pathology , RNA, Messenger/metabolism , Ribose-Phosphate Pyrophosphokinase/deficiency , S-Adenosylmethionine/pharmacology , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
9.
J Proteomics ; 187: 106-125, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30017948

ABSTRACT

Chronic exposure to heavy metals such as Pb, As, and MeHg can be associated with an increased risk of developing neurodegenerative diseases. Our in vitro bioassays results showed the potency of heavy metals in the order of Pb < As < MeHg on hippocampal cells. The main objective of this study was combining in vitro label free proteomics and systems biology approach for elucidating patterns of biological response, discovering underlying mechanisms of Pb, As, and MeHg toxicity in hippocampal cells. The omics data was refined by using different filters and normalization and multilevel analysis tools were employed to explore the data visualization. The functional and pathway visualization was performed by using Gene ontology and PathVisio tools. Using these all integrated approaches, we identified significant proteins across treatments within the mitochondrial dysfunction, oxidative stress, ubiquitin proteome dysfunction, and mRNA splicing related to neurodegenerative diseases. The systems biology analysis revealed significant alterations in proteins implicated in Parkinson's disease (PD) and Alzheimer's disease (AD). The current proteomics analysis of three metals support the insight into the proteins involved in neurodegeneration and the altered proteins can be useful for metal-specific biomarkers of exposure and its adverse effects. SIGNIFICANCE: The proteomics techniques have been claimed to be more sensitive than the conventional toxicological assays, facilitating the measurement of responses to heavy metals (Pb, As, and MeHg) exposure before obvious harm has occurred demonstrating their predictive value. Also, proteomics allows for the comparison of responses between Pb, As, and MeHg metals, permitting the evaluation of potency differences hippocampal cells of the brain. Hereby, the molecular information provided by pathway and gene functional analysis can be used to develop a more thorough understanding of each metal mechanism at the protein level for different neurological adverse outcomes (e.g. Parkinson's disease, Alzheimer's diseases). Efforts are put into developing proteomics based toxicity testing methods using in vitro models for improving human risk assessment. Some of the key proteins identified can also potentially be used as biomarkers in epidemiologic studies. These heavy metal response patterns shed new light on the mechanisms of mRNA splicing, ubiquitin pathway role in neurodegeneration, and can be useful for the development of molecular biomarkers of heavy metals exposure.


Subject(s)
Environmental Pollutants/toxicity , Hippocampus/drug effects , Metals, Heavy/toxicity , Nerve Tissue Proteins/metabolism , Neurodegenerative Diseases/metabolism , Proteome/drug effects , Arsenic/toxicity , Arsenic Poisoning/metabolism , Cells, Cultured , Environmental Illness/chemically induced , Environmental Illness/metabolism , Heavy Metal Poisoning/metabolism , Heavy Metal Poisoning/pathology , Hippocampus/chemistry , Hippocampus/metabolism , Humans , Lead/toxicity , Lead Poisoning, Nervous System/metabolism , Mercury Poisoning, Nervous System/metabolism , Methylmercury Compounds/toxicity , Nerve Tissue Proteins/analysis , Nerve Tissue Proteins/drug effects , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/pathology , Proteome/analysis , Proteome/metabolism , Proteomics
10.
J Plant Physiol ; 226: 103-113, 2018 07.
Article in English | MEDLINE | ID: mdl-29753910

ABSTRACT

Proteomic profiling of the stalk of a smut resistant and a susceptible sugarcane cultivars revealed the presence of dirigent and dirigent-like proteins in abundance in the pool of high molecular mass (HMMG) and mid-molecular mass (MMMG) glycoproteins, produced as part of the defensive response to the fungal smut pathogen. Quantitative RT-PCR analysis showed that expression levels of SofDIR16 (sugarcane dirigent16) and SofCAD (sugarcane cinnamyl alcohol dehydrogenase) were higher in the smut resistant My 55-14 cultivar than in the sensitive B 42231 cultivar prior to infection. Inoculation with fungal sporidia or water decreased the level of SofCAD transcripts in My 55-14, indicating that regulation of SofCAD expression does not take part of the specific response to smut infection. In contrast, SofDIR16 expression was almost nullified in My 55-14 after inoculation with fungal sporidia, but not after water injection. It is proposed that the decreased expression of dirigent proteins induces the formation of lignans, which are involved in the defense response of the smut resistant My 55-14 cultivar.


Subject(s)
Disease Resistance/drug effects , Gene Expression Regulation, Plant/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Saccharum/genetics , Ustilaginales/physiology , Plant Proteins/metabolism , Saccharum/metabolism , Saccharum/microbiology
11.
Sci Rep ; 8(1): 6681, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29703925

ABSTRACT

In this work, we examined plasma metabolome, proteome and clinical features in patients with severe septic shock enrolled in the multicenter ALBIOS study. The objective was to identify changes in the levels of metabolites involved in septic shock progression and to integrate this information with the variation occurring in proteins and clinical data. Mass spectrometry-based targeted metabolomics and untargeted proteomics allowed us to quantify absolute metabolites concentration and relative proteins abundance. We computed the ratio D7/D1 to take into account their variation from day 1 (D1) to day 7 (D7) after shock diagnosis. Patients were divided into two groups according to 28-day mortality. Three different elastic net logistic regression models were built: one on metabolites only, one on metabolites and proteins and one to integrate metabolomics and proteomics data with clinical parameters. Linear discriminant analysis and Partial least squares Discriminant Analysis were also implemented. All the obtained models correctly classified the observations in the testing set. By looking at the variable importance (VIP) and the selected features, the integration of metabolomics with proteomics data showed the importance of circulating lipids and coagulation cascade in septic shock progression, thus capturing a further layer of biological information complementary to metabolomics information.


Subject(s)
Metabolomics/methods , Plasma/chemistry , Proteomics/methods , Shock, Septic/mortality , Shock, Septic/pathology , Aged , Aged, 80 and over , Disease Progression , Female , Humans , Male , Mass Spectrometry , Middle Aged , Retrospective Studies , Survival Analysis , Time Factors
12.
Int J Biol Macromol ; 107(Pt A): 1014-1022, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28951306

ABSTRACT

Phospholipases A2 (PLA2s) are important enzymes present in snake venoms and are related to a wide spectrum of pharmacological effects, however the toxic potential and therapeutic effects of acidic isoforms have not been fully explored and understood. Due to this, the present study describes the isolation and biochemical characterization of two new acidic Asp49-PLA2s from Bothrops brazili snake venom, named Braziliase-I and Braziliase-II. The venom was fractionated in three chromatographic steps: ion exchange, hydrophobic interaction and reversed phase. The isoelectric point (pI) of the isolated PLA2s was determined by two-dimensional electrophoresis, and 5.2 and 5.3 pIs for Braziliase-I and II were observed, respectively. The molecular mass was determined with values ​​of 13,894 and 13,869Da for Braziliase-I and II, respectively. Amino acid sequence by Edman degradation and mass spectrometry completed 87% and 74% of the sequences, respectively for Braziliase-I and II. Molecular modeling of isolated PLA2s using acid PLA2BthA-I-PLA2 from B. jararacussu template showed high quality. Both acidic PLA2s showed no significant myotoxic activity, however they induced significant oedematogenic activity. Braziliase-I and II (100µg/mL) showed 31.5% and 33.2% of cytotoxicity on Trypanosoma cruzi and 26.2% and 19.2% on Leishmania infantum, respectively. Braziliase-I and II (10µg) inhibited 96.98% and 87.98% of platelet aggregation induced by ADP and 66.94% and 49% induced by collagen, respectively. The acidic PLA2s biochemical and structural characterization can lead to a better understanding of its pharmacological effects and functional roles in snakebites pathophysiology, as well as its possible biotechnological applications as research probes and drug leads.


Subject(s)
Phospholipases A2/chemistry , Platelet Aggregation Inhibitors/chemistry , Platelet Aggregation/drug effects , Snake Venoms/chemistry , Amino Acid Sequence/genetics , Animals , Bothrops/genetics , Leishmania infantum/drug effects , Leishmania infantum/pathogenicity , Models, Molecular , Phospholipases A2/genetics , Phospholipases A2/isolation & purification , Phospholipases A2/pharmacology , Platelet Aggregation Inhibitors/isolation & purification , Platelet Aggregation Inhibitors/pharmacology , Sequence Homology, Amino Acid , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/pathogenicity
13.
Biol Trace Elem Res ; 184(1): 226-239, 2018 Jul.
Article in English | MEDLINE | ID: mdl-28994012

ABSTRACT

Heavy metals are considered some of the most toxic environmental pollutants. Exposure to heavy metals including lead (Pb), cadmium (Cd), arsenic (As), and methyl mercury (MeHg) has long been known to cause damage to human health. Many recent studies have supported the hippocampus as the major target for these four metals for inflicting cognitive dysfunction. In the present study, we proposed hippocampal relevant in vitro toxicity of Pb, Cd, As, and MeHg in HT-22 cell line. This study reports, initially, cytotoxic effects in acute, subchronic, chronic exposures. We further investigated the mechanistic potency of DNA damage and apoptosis damage with the observed cytotoxicity. The genotoxicity and apoptosis were measured by using the comet assay, annexin-V FTIC / propidium iodide (PI) assay, respectively. The results of cytotoxicity assay clearly demonstrated significant concentration and time-dependent effects on HT-22 cell line. The genotoxic and apoptosis effects also concentration-dependent fashion with respect to their potency in the range of IC10-IC30, maximal level of damage observed in MeHg. In conclusion, the obtained result suggests concentration and potency-dependent response; the maximal level of toxicity was observed in MeHg. These novel findings support that Pb, Cd, As, and MeHg induce cytotoxic, genotoxic, and apoptotic effects on HT-22 cells in potency-dependent manner; MeHg> As> Cd> Pb. Therefore, the toxicity of Pb, Cd, As, and MeHg could be useful for knowing the common underlying molecular mechanism, and also for estimating the mixture impacts on HT-22 cell line.


Subject(s)
Arsenic/toxicity , Cadmium/toxicity , Lead/toxicity , Metals, Heavy/toxicity , Methylmercury Compounds/toxicity , Apoptosis/drug effects , Apoptosis/genetics , Cell Line , Comet Assay , DNA Damage/drug effects , DNA Damage/genetics , Environmental Pollutants/toxicity , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Oxidative Stress/drug effects , Oxidative Stress/genetics
14.
Toxicol Lett ; 282: 25-36, 2018 Jan 05.
Article in English | MEDLINE | ID: mdl-28988819

ABSTRACT

Humans are exposed to a cocktail of heavy metal toxicants in the environment. Though heavy metals are deleterious, there is a paucity of information on the toxicity of mixtures. In this study, four common neurotoxicity heavy metals lead (Pb) cadmium (Cd), arsenic (As), and methylmercury (MeHg) were exposed individually and as mixtures to HT-22 cell line for 8days. The study established that low dose exposures induced toxicity to the HT-22 cell line during 8days. The results indicates potency dependent response, the toxicity of single metals on the HT-22 cells; MeHg > As > Cd > Pb. The cytotoxicity data of single metals were used to determine the mixtures interaction profile by using the dose additivity and effect additivity method. Metal mixtures showed higher toxicities compared to individual metals. Synergistic, antagonistic or additive effects of the toxicity were observed in different mixtures in low dose exposure. The interactive responses of mixtures depend on the co-exposure metal and their respective concentration. We concluded that the combined effects should be considered in the risk assessment of heavy metal co-exposure and potency. In future, comprehensive mechanistic based investigations needed for understanding the real interactive mixtures effects at molecular level.


Subject(s)
Environmental Pollutants/toxicity , Hippocampus/drug effects , Metals, Heavy/toxicity , Animals , Apoptosis/drug effects , Cell Culture Techniques , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Interactions , Hippocampus/cytology , Lethal Dose 50 , Mice
15.
Sci Rep ; 7(1): 15291, 2017 11 10.
Article in English | MEDLINE | ID: mdl-29127378

ABSTRACT

Salmonella possesses virulence determinants that allow replication under extreme conditions and invasion of host cells, causing disease. Here, we examined four putative genes predicted to encode membrane proteins (ydiY, ybdJ, STM1441 and ynaJ) and a putative transcriptional factor (yedF). These genes were identified in a previous study of a S. Typhimurium clinical isolate and its multidrug-resistant counterpart. For STM1441 and yedF a reduced ability to interact with HeLa cells was observed in the knock-out mutants, but an increase in this ability was absent when these genes were overexpressed, except for yedF which phenotype was rescued when yedF was restored. In the absence of yedF, decreased expression was seen for: i) virulence-related genes involved in motility, chemotaxis, attachment and survival inside the host cell; ii) global regulators of the invasion process (hilA, hilC and hilD); and iii) factors involved in LPS biosynthesis. In contrast, an increased expression was observed for anaerobic metabolism genes. We propose yedF is involved in the regulation of Salmonella pathogenesis and contributes to the activation of the virulence machinery. Moreover, we propose that, when oxygen is available, yedF contributes sustained repression of the anaerobic pathway. Therefore, we recommend this gene be named vrf, for virulence-related factor.


Subject(s)
Bacterial Proteins , Drug Resistance, Multiple, Bacterial , Salmonella typhimurium , Transcription Factors , Virulence Factors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , HeLa Cells , Humans , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Salmonella typhimurium/pathogenicity , Transcription Factors/genetics , Transcription Factors/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism
16.
Theriogenology ; 100: 8-15, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28708537

ABSTRACT

To the best of our knowledge, this is the first study describing the proteome of equine umbilical cord intervascular matrix mesenchymal stem cells (UCIM-MSCs) in a global and functional manner. The aim of this work was to analyze the proteome of previously characterized UCIM-MSCs to determine protein abundance and classify the identified proteins according to Gene Ontology (GO) terms. Protein classification analysis according to biological process, molecular function and cellular component was performed using the PANTHER (Protein ANalysis THrough Evolutionary Relationships) Classification System, which revealed enrichment for 42 biological processes, 23 molecular functions and 18 cellular components. Protein abundance was estimated according to the emPAI method (Exponential Modified Protein Abundance Index). The two most abundant proteins in the proteome of UCIM-MSCs were the cytoskeletal proteins actin and vimentin, which have important roles in cell stability and motility. Additionally, we identified 14 cell surface antigens. Three of them, CD44, CD90 and CD105, had been previously validated by flow cytometry. In the present study, we also identified important information about the biological properties of UCIM-MSCs such as differentiation potential, low immunogenicity (low MHC-II expression) and chromosomal stability, which reinforces their use for cell therapy. Together with the proteomic findings, this information allowed us to infer the functional relevance of several activities related to primary metabolic processes, protein synthesis, production of vesicle coats, vesicle-mediated transport and antioxidant activity. In addition, the identification of different cell surface markers may help establish an immunophenotypic panel suitable for the characterization of MSCs from equine fetal membranes.


Subject(s)
Horses/physiology , Mesenchymal Stem Cells/metabolism , Proteome , Umbilical Cord/cytology , Animals , Gene Expression Regulation/physiology
17.
Toxicol In Vitro ; 45(Pt 3): 309-317, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28673560

ABSTRACT

Pesticides and other persistent organic pollutants are considered as risk factors for liver diseases. We treated the human hepatic cell line HepaRG with both 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) and the organochlorine pesticide, α-endosulfan, to evaluate their combined impact on the expression of hepatic genes involved in alcohol metabolism. We show that the combination of the two pollutants (25nM TCDD and 10µM α-endosulfan) led to marked decreases in the amounts of both the mRNA (up to 90%) and protein (up to 60%) of ADH4 and CYP2E1. Similar results were obtained following 24h or 8days of treatment with lower concentrations of these pollutants. Experiments with siRNA and AHR agonists and antagonist demonstrated that the genomic AHR/ARNT pathway is necessary for the dioxin effect. The PXR, CAR and estrogen receptor alpha transcription factors were not modulators of the effects of α-endosulfan, as assessed by siRNA transfection. In another human hepatic cell line, HepG2, TCDD decreased the expression of ADH4 and CYP2E1 mRNAs whereas α-endosulfan had no effect on these genes. Our results demonstrate that exposure to a mixture of pollutants may deregulate hepatic metabolism.


Subject(s)
Alcohol Dehydrogenase/biosynthesis , Cytochrome P-450 CYP2E1/biosynthesis , Endosulfan/toxicity , Environmental Pollutants/toxicity , Insecticides/toxicity , Polychlorinated Dibenzodioxins/toxicity , Alcohol Dehydrogenase/drug effects , Cytochrome P-450 CYP2E1/drug effects , Down-Regulation , Hep G2 Cells , Humans , RNA, Small Interfering , Receptors, Aryl Hydrocarbon/drug effects , Signal Transduction/drug effects
18.
Vet Immunol Immunopathol ; 187: 42-47, 2017 May.
Article in English | MEDLINE | ID: mdl-28494928

ABSTRACT

The use of the conditioned medium (CM) for diseases treatment is based on its enrichment with biomolecules with therapeutic properties and themselves have a beneficial effect. Secretome of bovine endometrial mesenchymal progenitor/stem cells (eMSCs) using a proteomics approach is until now unknown. This work aimed to evaluate the secretome of bovine eMSCs-CM challenged or not with lipopolysaccharide (LPS). For this, eMSCs characterized were challenged (TG) or not (CG). The CM was collected 12h after stimulation and submitted to mass spectrometry analysis. The classification of identified proteins was done by PANTHER according to biological processes, molecular function, cellular component and protein class. 397 protein groups were identified in TG and 302 in CG. We observed positive enrichment for antibacterial response proteins, macrophage activation function, receptor-mediated endocytosis, hydrolase activity, inhibitory enzyme in TG, and for activity structural molecule and intermediate filament cytoskeleton in the CG. Our experimental model shows that eMSCs respond to LPS in the concentration used and can be used to study immune-inflammatory response, besides of the secretion of proteins mainly related to tissue remodeling, immune response and angiogenesis which is an interesting feature for use in cell therapy.


Subject(s)
Endometrium/cytology , Lipopolysaccharides/pharmacology , Mesenchymal Stem Cells/metabolism , Animals , Cattle , Endometrium/drug effects , Endometrium/metabolism , Female , Mesenchymal Stem Cells/drug effects , Proteomics/methods , Transcriptome
19.
BMC Immunol ; 18(1): 10, 2017 02 24.
Article in English | MEDLINE | ID: mdl-28235411

ABSTRACT

BACKGROUND: Allergy to cat epithelia is highly prevalent, being the major recommendation for allergy sufferers its avoidance. However, this is not always feasible. Allergen specific immunotherapy is therefore recommended for these patients. The use of polymerized allergen extracts, allergoids, would allow to achieve the high allergen doses suggested to be effective while maintaining safety. RESULTS: Cat native extract and its depigmented allergoid were manufactured and biochemically and immunochemically characterized. Protein and chromatographic profiles showed significant modification of the depigmented allergoid with respect to its corresponding native extract. However, the presence of different allergens (Fel d 1, Fel d 2, Fel d 3, Fel d 4 and Fel d 7) was confirmed in the allergoid. Differences in IgE-binding capacity were observed as loss of biological potency and lower stability of the IgE-allergen complex on surface plasmon resonance. The allergoid induced production of IgG antibodies able to block IgE-binding to native extract. Finally, studies carried out with peripheral-blood mononuclear cells from cat allergic patients showed that the allergoid induced IFN-γ and IL-10 production similar to that induced by native extract. CONCLUSIONS: Cat depigmented allergoid induced production of cytokines involved in a Th1 and Treg response, was able to induce production of IgG-antibodies that blocks IgE-binding to cat native extract, and showed reduced interaction with IgE, suggesting greater safety than native extract while maintaining in vitro efficacy.


Subject(s)
Cell Extracts/immunology , Dander/immunology , Desensitization, Immunologic/methods , Glycoproteins/immunology , Hypersensitivity/therapy , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Animals , Cats , Cells, Cultured , Humans , Hypersensitivity/immunology , Immunoglobulin E/metabolism , Interferon-gamma/metabolism , Interleukin-10/metabolism , Lymphocyte Activation , Polymerization , Protein Binding
20.
J Proteomics ; 152: 138-149, 2017 01 30.
Article in English | MEDLINE | ID: mdl-27989941

ABSTRACT

Despite the maturity reached by targeted proteomic strategies, reliable and standardized protocols are urgently needed to enhance reproducibility among different laboratories and analytical platforms, facilitating a more widespread use in biomedical research. To achieve this goal, the use of dimensionless relative retention times (iRT), defined on the basis of peptide standard retention times (RT), has lately emerged as a powerful tool. The robustness, reproducibility and utility of this strategy were examined for the first time in a multicentric setting, involving 28 laboratories that included 24 of the Spanish network of proteomics laboratories (ProteoRed-ISCIII). According to the results obtained in this study, dimensionless retention time values (iRTs) demonstrated to be a useful tool for transferring and sharing peptide retention times across different chromatographic set-ups both intra- and inter-laboratories. iRT values also showed very low variability over long time periods. Furthermore, parallel quantitative analyses showed a high reproducibility despite the variety of experimental strategies used, either MRM (multiple reaction monitoring) or pseudoMRM, and the diversity of analytical platforms employed. BIOLOGICAL SIGNIFICANCE: From the very beginning of proteomics as an analytical science there has been a growing interest in developing standardized methods and experimental procedures in order to ensure the highest quality and reproducibility of the results. In this regard, the recent (2012) introduction of the dimensionless retention time concept has been a significant advance. In our multicentric (28 laboratories) study we explore the usefulness of this concept in the context of a targeted proteomics experiment, demonstrating that dimensionless retention time values is a useful tool for transferring and sharing peptide retention times across different chromatographic set-ups.


Subject(s)
Biomedical Research/methods , Chromatography, Liquid/methods , Proteomics/methods , Biomedical Research/standards , Chromatography, Liquid/standards , Observer Variation , Proteomics/organization & administration , Proteomics/standards , Reference Standards , Reproducibility of Results , Research/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...