Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Mar Pollut Bull ; 114(2): 831-836, 2017 Jan 30.
Article in English | MEDLINE | ID: mdl-27847170

ABSTRACT

Fossil fuels, e.g. gasoline and diesel oil, account for substantial share of the pollution that affects marine ecosystems. Environmental metabolomics is an emerging field that may help unravel the effect of these xenobiotics on seaweeds and provide methodologies for biomonitoring coastal ecosystems. In the present study, FTIR and multivariate analysis were used to discriminate metabolic profiles of Ulva lactuca after in vitro exposure to diesel oil and gasoline, in combinations of concentrations (0.001%, 0.01%, 0.1%, and 1.0% - v/v) and times of exposure (30min, 1h, 12h, and 24h). PCA and HCA performed on entire mid-infrared spectral window were able to discriminate diesel oil-exposed thalli from the gasoline-exposed ones. HCA performed on spectral window related to the protein absorbance (1700-1500cm-1) enabled the best discrimination between gasoline-exposed samples regarding the time of exposure, and between diesel oil-exposed samples according to the concentration. The results indicate that the combination of FTIR with multivariate analysis is a simple and efficient methodology for metabolic profiling with potential use for biomonitoring strategies.


Subject(s)
Environmental Monitoring/methods , Fuel Oils/analysis , Metabolome/drug effects , Ulva/drug effects , Brazil , Gasoline/analysis , Metabolomics , Models, Theoretical , Multivariate Analysis , Principal Component Analysis , Spectroscopy, Fourier Transform Infrared , Ulva/metabolism
2.
Chemosphere ; 156: 428-437, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27192480

ABSTRACT

Refined fuels have considerable share of pollution of marine ecosystems. Gasoline is one of the most consumed fuel worldwide, but its effects on marine benthic primary producers are poorly investigated. In this study, Ulva lactuca was chosen as a biological model due to its cosmopolitan nature and tolerance to high levels and wide range of xenobiotics and our goal was to evaluate the effects of gasoline on ultrastructure and metabolism of that seaweed. The experimental design consisted of in vitro exposure of U. lactuca to four concentrations of gasoline (0.001%, 0.01%, 0.1%, and 1.0%, v/v) over 30 min, 1 h, 12 h, and 24 h, followed by cytochemical, SEM, and biochemical analysis. Increase in the number of cytoplasmic granules, loss of cell turgor, cytoplasmic shrinkage, and alterations in the mucilage were some of the ultrastructural alterations observed in thalli exposed to gasoline. Decrease in carotenoid and polyphenol contents, as well as increase of soluble sugars and starch contents were associated with the time of exposure to the xenobiotic. In combination, the results revealed important morphological and biochemical alterations in the phenotype of U. lactuca upon acute exposure to gasoline. This seaweed contain certain metabolites assigned as candidates to biomarkers of the environmental stress investigated and it is thought to be a promise species for usage in coastal ecosystems perturbation monitoring system. In addition, the findings suggest that U. lactuca is able to metabolize gasoline hydrocarbons and use them as energy source, acting as bioremediator of marine waters contaminated by petroleum derivatives.


Subject(s)
Gasoline/toxicity , Seaweed/drug effects , Ulva/drug effects , Water Pollutants, Chemical/toxicity , Biodegradation, Environmental , Carotenoids/metabolism , Polyphenols/metabolism , Seaweed/metabolism , Seaweed/ultrastructure , Starch/metabolism , Ulva/metabolism , Ulva/ultrastructure
3.
Protoplasma ; 253(1): 111-25, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25772683

ABSTRACT

The effects of the heavy metals copper (Cu) and lead (Pb) on Sargassum cymosum were evaluated by determining uptake capacity, growth rates, photosynthetic efficiency, contents of photosynthetic pigments and phenolic compounds, 2,2-diphenyl-1-picrylhydrazyl radical-scavenging capacity, and morphological and cellular changes. S. cymosum was cultivated with Cu and Pb separately and combined at concentrations of 10, 25, and 50 µM for 7 days in laboratory-controlled conditions. Seaweeds under Cu treatment showed the highest biosorption capacity, and growth rates were significantly reduced compared to the control. The photosynthesis/irradiance curves showed alterations in kinetic patterns in the metal-treated samples. Specifically, Cu treatment alone inhibited electron transport rate (ETR) response, while Pb alone induced it. However, samples treated with both Cu and Pb (Cu + Pb) showed inhibition in ETR. The total amount of pigments increased relative to control. Light microscopy showed an increase in phenolic compounds, with physodes migrating towards cortical cells. Scanning electronic microscopy revealed alterations in the typical rough surface of thallus, when compared with control, especially for Pb treatments. Based on these results, it could be concluded that Cu and Pb are stress factors for S. cymosum, promoting alterations in seaweed metabolism and stimulating protective mechanisms against oxidative stress. However, the high bioaccumulation capacity of both heavy metals indicates a possible application for S. cymosum as a biosorbent agent for contaminated wastewater when metals are in low concentrations.


Subject(s)
Copper/toxicity , Lead/toxicity , Seaweed/drug effects , Seaweed/physiology , Absorption, Physiological/drug effects , Antioxidants/metabolism , Chlorophyll/metabolism , Chlorophyll A , Electron Transport/drug effects , Fluorescence , Phenols/metabolism , Photosynthesis/drug effects , Seaweed/growth & development , Seaweed/ultrastructure , Water/metabolism
4.
Protoplasma ; 252(5): 1347-59, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25666304

ABSTRACT

By evaluating carotenoid content, photosynthetic pigments and changes in cellular morphology, growth rates, and photosynthetic performance, this study aimed to determine the effect of cadmium (Cd) on the development of young gametophytes of Gelidium floridanum. Plants were exposed to 7.5 and 15 µM of Cd for 7 days. Control plants showed increased formation of new filamentous thallus, increased growth rates, presence of starch grains in the cortical and subcortical cells, protein content distributed regularly throughout the cell periphery, and intense autofluorescence of chloroplasts. On the other hand, plants treated with Cd at concentrations of 7.5 and 15 µM showed few formations of new thallus with totally depigmented regions, resulting in decreased growth rates. Plants exposed to 7.5 µM Cd demonstrated alterations in the cell wall and an increase in starch grains in the cortical and subcortical cells, while plants exposed to 15 µM Cd showed changes in medullary cells with no organized distribution of protein content. The autofluorescence and structure of chloroplasts decreased, forming a thin layer on the periphery of cells. Cadmium also affected plant metabolism, as visualized by a decrease in photosynthetic pigments, in particular, phycoerythrin and phycocyanin contents, and an increase in carotenoids. This result agrees with decreased photosynthetic performance and chronic photoinhibition observed after treatment with Cd, as measured by the decrease in electron transport rate. Based on these results, it was concluded that exposure to Cd affects cell metabolism and results in significant toxicity to young gametophytes of G. floridanum.


Subject(s)
Cadmium/toxicity , Germ Cells, Plant/drug effects , Rhodophyta/drug effects , Water Pollutants, Chemical/toxicity , Carotenoids/metabolism , Chlorophyll/metabolism , Chloroplasts/metabolism , Electron Transport , Germ Cells, Plant/physiology , Germ Cells, Plant/ultrastructure , Photosynthesis , Rhodophyta/cytology , Rhodophyta/physiology
SELECTION OF CITATIONS
SEARCH DETAIL