Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Gastroenterol Hepatol ; 18(2): 101349, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38697357

ABSTRACT

BACKGROUND & AIMS: Humans with WNT2B deficiency have severe intestinal disease, including significant inflammatory injury, highlighting a critical role for WNT2B. We sought to understand how WNT2B contributes to intestinal homeostasis. METHODS: We investigated the intestinal health of Wnt2b knock out (KO) mice. We assessed the baseline histology and health of the small intestine and colon, and the impact of inflammatory challenge using dextran sodium sulfate (DSS). We also evaluated human intestinal tissue. RESULTS: Mice with WNT2B deficiency had normal baseline histology but enhanced susceptibility to DSS colitis because of an increased early injury response. Although intestinal stem cells markers were decreased, epithelial proliferation was similar to control subjects. Wnt2b KO mice showed an enhanced inflammatory signature after DSS treatment. Wnt2b KO colon and human WNT2B-deficient organoids had increased levels of CXCR4 and IL6, and biopsy tissue from humans showed increased neutrophils. CONCLUSIONS: WNT2B is important for regulation of inflammation in the intestine. Absence of WNT2B leads to increased expression of inflammatory cytokines and increased susceptibility to gastrointestinal inflammation, particularly in the colon.

2.
Biomed Pharmacother ; 138: 111505, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33773467

ABSTRACT

Doxorubicin (DOX) is an anthracycline antibiotic used in the fight against many types of cancer. Although it is quite effective for this purpose, its clinical use is limited by its severe side effects, highlighting the relevance of efforts to identify substances that act to minimize these effects. In this work, we sought to verify the ability of andiroba oil (AO) and a nanoemulsion of andiroba oil (AN) to lessen the side effects of DOX. The animals were separated into 7 groups with 6 animals each: mice treated with AO (2000 mg/kg), AN (2000 mg/kg), the antineoplastic agent DOX (40 mg/kg), AO+DOX, AN+DOX and solvent controls was used of negative control (corn oil and nanoemulsion surfactant). AO and AN were administered for 14 consecutive days orally by gavage and on the 13th day, applied DOX by intraperitoneal route (i.p.), in order to evaluate the protective potential of andiroba. The animals were euthanized on the 15th day. Hematological, biochemical, histological, and immunohistochemical parameters were analyzed. Andiroba reduced several aspects of the severity of lesions caused by DOX, decreasing hematotoxicity and the severity of histological changes in the liver and kidneys, and reducing the frequency of apoptotic cell death. In many cases, AN showed greater efficacy than AO alone, reflecting the feasibility of using this nanotechnology to improve the pharmacokinetics of lipid compounds in the body. The study sheds new light on the therapeutic benefits of andiroba and suggests new ways for investigating how the quantity and quality of lipid compounds affect exposed organisms.


Subject(s)
Antineoplastic Agents/toxicity , Doxorubicin/toxicity , Emulsions/therapeutic use , Meliaceae , Plant Oils/therapeutic use , Animals , Emulsions/isolation & purification , Emulsions/pharmacology , Female , Injections, Intraperitoneal , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Mice , Plant Oils/isolation & purification , Plant Oils/pharmacology , Spleen/drug effects , Spleen/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...