Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Diagn Microbiol Infect Dis ; 109(2): 116227, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38503028

ABSTRACT

The objective of this systematic review is to analyze the diagnostic accuracy of rapid dengue diagnostic tests. The search was conducted in the following databases: LILACS, Medline (Pubmed), CRD, The Cochrane Library, Trip Medical Database and Google Scholar. ELISA and PCR assays were adopted as reference methods. Thirty-four articles were included in this systematic review. Receiver operating characteristic (ROC) and Forest Plot were performed to evaluate sensitivity and specificity for each parameter analyzed (NS1, IgM and IgG). The results revealed that the combined analysis of the IgM antibody with the NS1 antigen resulted in greater sensitivity than the isolated analysis of IgM. The three analytes together showed the best performance, with a combined sensitivity of 90 % (95 % CI: 89-92 %) using ELISA as a comparator. Thus, the present review provides relevant knowledge for decision-making between the available rapid diagnostic tests.


Subject(s)
Antibodies, Viral , Dengue , Immunoglobulin M , Sensitivity and Specificity , Humans , Antibodies, Viral/blood , Chromatography, Affinity/methods , Dengue/diagnosis , Dengue Virus/immunology , Diagnostic Tests, Routine/methods , Diagnostic Tests, Routine/standards , Enzyme-Linked Immunosorbent Assay/methods , Immunoglobulin G/blood , Immunoglobulin M/blood , ROC Curve , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/blood
2.
J Pharm Biomed Anal ; 235: 115606, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37544275

ABSTRACT

Acute promyelocytic leukemia (APL) in children is associated with a favorable initial prognosis. However, minimal residual disease (MRD) follow-up remains poorly defined, and relapse cases are concerning due to their recurrent nature. Thus, we report two electrochemical flexible genosensors based on polypyrrole (PPy) and graphene quantum dots (GQDs) for label-free PML-RARα oncogene detection. Atomic force microscopy (AFM), scanning electron microscope (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used to characterize the technological biosensor development. M7 and APLB oligonucleotide sequences were used as bioreceptors to detect oncogenic segments on chromosomes 15 and 17, respectively. AFM characterization revealed heterogeneous topographical surfaces with maximum height peaks for sensor layers when tested with positive patient samples. APLB/Genosensor exhibited a percentage change in anode peak current (ΔI) of 423 %. M7/Genosensor exhibited a ΔI of 61.44 % for more concentrated cDNA samples. The described behavior is associated with the biospecific recognition of the proposed biosensors. Limits of detection (LOD) of 0.214 pM and 0.677 pM were obtained for APLB/Genosensor and M7/Genosensor, respectively. The limits of quantification (LOQ) of 0.648 pM and 2.05 pM were estimated for APLB/Genosensor and M7/Genosensor, respectively. The genosensors showed reproducibility with a relative standard deviation of 7.12 % for APLB and 1.18 % for M7 and high repeatability (9.89 % for APLB and 1.51 % for M7). In addition, genetic tools could identify the PML-RARα oncogene in purified samples, plasmids, and clinical specimens from pediatric patients diagnosed with APL with high bioanalytical performance. Therefore, biosensors represent a valuable alternative for the clinical diagnosis of APL and monitoring of MRD with an impact on public health.


Subject(s)
Graphite , Leukemia, Promyelocytic, Acute , Quantum Dots , Humans , Child , Leukemia, Promyelocytic, Acute/diagnosis , Leukemia, Promyelocytic, Acute/genetics , Polymers , Pyrroles , Reproducibility of Results
3.
Biotechnol Prog ; 39(3): e3334, 2023.
Article in English | MEDLINE | ID: mdl-36795023

ABSTRACT

This article developed a novel electrochemical immunosensor for the specific detection of aflatoxin B1 (AFB1). Amino-functionalized iron oxide nanoparticles (Fe3 O4 -NH2 ) were synthesized. Fe3 O4 -NH2 were chemically bound on self-assembly monolayers (SAMs) of mercaptobenzoic acid (MBA). Finally, polyclonal antibodies (pAb) were immobilized on Fe3 O4 -NH2 -MBA. The sensor system was evaluated through atomic force microscopy (AFM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). A reduction in the anodic and cathodic peak currents was observed after the assembly of the sensor platform. The charge transfer resistance (Rct ) was increased due to the electrically insulating bioconjugates. Then, the specific interaction between the sensor platform and AFB1 blocks the electron transfer of the [Fe(CN)6 ]3-/4- redox pair. The nanoimmunosensor showed a linear response range estimated from 0.5 to 30 µg/mL with a limit of detection (LOD) of 9.47 µg/mL and a limit of quantification (LOQ) of 28.72 µg/mL for AFB1 identification in a purified sample. In addition, a LOD of 3.79 µg/mL, a LOQ of 11.48 µg/mL, and a regression coefficient of 0.9891 were estimated for biodetection tests on peanut samples. The proposed immunosensor represents a simple alternative, successfully applied in detecting AFB1 in peanuts, and therefore, represents a valuable tool for ensuring food safety.


Subject(s)
Arachis , Biosensing Techniques , Aflatoxin B1/analysis , Aflatoxin B1/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Immunoassay , Limit of Detection , Gold/chemistry
4.
Talanta ; 256: 124285, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36706502

ABSTRACT

Systemic sclerosis (SSc) is a chronic, autoimmune disease that primarily affects connective tissue. SSc can be classified into limited cutaneous (lSSc) and diffuse cutaneous (dSSc). Oncostatin M receptor (sOSMR) is an important inflammatory biomarker expressed in the serum of patients with autoimmune diseases. A nanoengineered immunosensor surface was developed. The biosensor was composed of a conductive layer of polypyrrole, electrodeposited gold nanoparticles, and sOSMR protein for anti-human OSMR monoclonal antibody biorecognition. The electrochemical response evaluated by cyclic voltammetry and electrochemical impedance spectroscopy indicated the detection of the target analyte present in clinical samples from lSSc and dSSc patients. The voltammetric anodic shift for lSSc specimens was 82.7% ± 0.9-93.6% ± 3.2, and dSSc specimens was 118.7 ± 2.6 to 379.6 ± 2.6, revealing a differential diagnostic character for SSc subtypes. The sensor platform was adapted for identifying sOSMR, using anti-OSMR antibodies as bioreceptors. With a linear response range estimated from 0.005 to 500 pg mL-1 and a limit of detection of 0.42 pg mL-1, the sensing strategy demonstrated high sensitivity in identifying the human OSMR protein in clinical samples. The proposed biosensor is a promising and innovative tool for SSc-related biomarker research.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Scleroderma, Systemic , Humans , Autoantibodies , Biomarkers , Gold , Immunoassay , Polymers , Pyrroles , Receptors, Oncostatin M , Scleroderma, Systemic/diagnosis , Electrochemical Techniques
5.
Eur J Clin Microbiol Infect Dis ; 41(9): 1191-1201, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35988010

ABSTRACT

Rapid immunochromatographic tests are frequently used to diagnose dengue due to their easy use, low cost, and fast response. A high level of accuracy is essential for rapid diagnostic tests to support their large-scale use. Thus, this systematic review aims to evaluate the accuracy of rapid dengue diagnostic tests. The investigation was run through the following databases: LILACS, Medline (Pubmed), CRD, The Cochrane Library, Trip Medical Database, and Google Scholar. To solve difficulties, two independent reviewers performed document screening and selection. ELISA assay was adopted as a reference test because of several methodologic advantages. Seventeen articles were included accordingly, reckoning 6837 participating individuals. The receiver operating characteristic (ROC) and Forest Plot were conducted to evaluate the sensitivity and specificity for each analyzed parameter (anti-dengue IgM, IgG, and NS1 antigen). The risk of bias and quality of evidence were assessed as moderate using QUADAS-2 and Grading of Recommendations Assessment, Development, and Evaluation (GRADE), respectively. The sensitivity of IgM concerning the studied tests ranged from 13.8 to 90%, while that of NS1 ranged from 14.7 to 100% (95% CI). The antibodies with NS1 presented increased sensitivity; pooled data show that the association of the three analytes bestows the best result, with a combined sensitivity of 90% (CI 95%: 87-92%) and a pooled specificity of 89% (CI 95%: 87-92%). Thus, the present review provides relevant knowledge for decision-making between available rapid diagnostic tests.


Subject(s)
Diagnostic Tests, Routine , Diagnostic Tests, Routine/methods , Enzyme-Linked Immunosorbent Assay/methods , Humans , Immunoglobulin M , ROC Curve , Sensitivity and Specificity
6.
Enzyme Microb Technol ; 160: 110088, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35777193

ABSTRACT

The increasing number of multidrug resistance microorganisms is an alarming threat, and their rapid detection is essential to prevent nosocomial, foodborne, or waterborne infections. Many peptides derived from the venom of wasp Synoeca surinama have antimicrobial activity against Gram-positive and Gram-negative bacteria. Synoeca-MP, an antimicrobial peptide (AMP) from mastoparan family, seems to increase bacterial membrane permeability, promoting cytotoxicity and membrane disruption. Here Synoeca-MP was evaluated as biorecognition element tethered over chitosan-coated magnetic nanoparticles (Fe3O4-Chit). The transducing layer of the biosensor was developed from the self-assembling of 4-mercaptobenzoic acid (4-MBA) monolayer onto gold substrate. Atomic force microscopy (AFM) analyses confirmed the biointeraction between AMP and different pathogens membranes. The fabrication and performance of the biosensing assembly were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Detection of Enterococcus faecalis (G+), Klebsiella pneumoniae (G-), Pseudomonas aeruginosa (G-), and Candida tropicalis was assessed in a recognition range from 101 to 105 CFU.mL-1. An instrumental limit of detection of 10 CFU.mL-1 was obtained for each specimen. However, the device presented a preferential selectivity towards Gram-negative bacteria. The proposed biosensor is a sensitive, fast, and straightforward platform for microbial detection in aqueous samples, envisaged for environmental monitoring applications.


Subject(s)
Biosensing Techniques , Magnetite Nanoparticles , Anti-Bacterial Agents/pharmacology , Biosensing Techniques/methods , Electrochemical Techniques/methods , Gold/chemistry , Gram-Negative Bacteria , Gram-Positive Bacteria , Intercellular Signaling Peptides and Proteins , Magnetite Nanoparticles/chemistry , Wasp Venoms
7.
Bioelectrochemistry ; 147: 108176, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35779517

ABSTRACT

The present research refers to elaborating a new label-free electrochemical biosensor used to detect the BCR/ABL fusion gene. We used a hybrid nanocomposite composed of chitosan and zinc oxide nanoparticles (Chit-ZnONP) immobilized on a polypyrrole (PPy) film. DNA segments were covalently immobilized, allowing biomolecular recognition. Atomic force microscopy (AFM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used to evaluate the assembly stages of the biosensor. The biosensor's analytical performance was investigated using recombinant plasmids containing the target oncogene and clinical samples from patients with chronic myeloid leukemia (CML). A limit of detection (LOD) of 1.34 fM, limit of quantification (LOQ) of 4.08 fM, and sensitivity of 34.03 µA fM-1 cm2 were calculated for the BCR/ABL fusion oncogene. The sensing system exhibited high specificity, selectivity, and reproducibility with a standard deviation (SD) of 4.21%. Additionally, a linear response range was observed between 138.80 aM to 13.88 pM with a regression coefficient of 0.96. Also, the biosensor shows easy operationalization and fast analytical response, contributing to the early cancer diagnosis. The proposed nanostructured device is an alternative for the genetic identification BCR/ABL fusion gene.


Subject(s)
Biosensing Techniques , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Nanocomposites , Biosensing Techniques/methods , DNA/genetics , Electrochemical Techniques/methods , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Nanocomposites/chemistry , Polymers/chemistry , Pyrroles , Reproducibility of Results
8.
J Pharm Biomed Anal ; 216: 114788, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35525110

ABSTRACT

Bacterial and fungal infections are challenging due to their low susceptibility and resistance to antimicrobial drugs. For this reason, antimicrobial peptides (AMP) emerge as excellent alternatives to overcome these problems. At the same time, their active insertion into the cell wall of microorganisms can be availed for biorecognition applications in biosensing platforms. Temporin-PTA (T-PTA) is an AMP found in the skin secretions of the Malaysian fire frog Hylarana picturata, which presents antibacterial activity against MRSA, Escherichia coli, and Bacillus subtilis. In this work, T-PTA was explored as an innovative sensing layer aiming for the electrochemical differentiation of Klebsiella pneumoniae, Acinetobacter baumannii, Bacillus subtilis, Enterococcus faecalis, Candida albicans, and C. tropicalis based on the structural differences of their membranes. The biosensor was analyzed through electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). In this approach, the different structural features of each microorganism resulted in different adherence degrees and, therefore, different electrochemical responses. The transducing layer was fabricated by the self-assembling of a 4-mercaptobenzoic acid (MBA) monolayer and gold-capped magnetic nanoparticles (Fe3O4@Au) implemented to improve the electrical signal of the biointeraction. We found that each interaction, expressed in variations of electron transfer resistance and anodic peak current, demonstrated a singular response from which the platform can discriminate all different microorganisms. We found expressive sensitivity towards Gram-negative species, especially K. pneumoniae. A detection limit of 101 CFU.mL-1 and a linear range of 101 to 105 CFU.mL-1 were obtained. The T-PTA biosensor platform is a promising and effective tool for microbial identification.


Subject(s)
Biosensing Techniques , Antimicrobial Cationic Peptides/chemistry , Biosensing Techniques/methods , Electrodes , Gold/chemistry
9.
ACS Appl Mater Interfaces ; 14(1): 41-48, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34932313

ABSTRACT

Zika virus (ZIKV) infection is associated with the Guillain-Barré syndrome, and when non-vector congenital transmission occurs, fetal brain abnormalities are expected. After ZIKV infection, the blood, breast milk, and other body fluids contain low viral loads. Their detection is challenging as it requires the processing of larger input volumes of the clinical samples. Pre-enrichment is a valuable strategy to increase the analyte concentration. Therefore, the authors propose the use of a hierarchal composite polyaniline-(electrospun nanofiber) hydrogel mat (ENM) for the simultaneous enrichment and impedimetric sensing of ZIKV viral particles. The electrospinning conditions of polyvinyl alcohol and alginate, including blend formulation, were optimized through a factorial design. Disintegration and gelatinization were controlled via cross-linking to improve the hydrogel properties. Hierarchization was achieved by in situ chemical deposition of conductive polyaniline. The carboxyl groups of the ENM were used for the covalent immobilization of anti-ZIKV polyclonal antibodies used in the specific recognition of ZIKV within the medium of Vero cell culture. The specific capture and desorption of virions were studied at different pHs. ENMs were characterized by scanning electron microscopy and FTIR. Atomic force microscopy along with UV-vis and electrochemical impedance spectroscopies was used to monitor the antibody immobilization, ZIKV capture, and elution processes. Our results show that 14.2 mg (0.25 cm3) of ENM can capture 38.7 ± 2.5 µg of ZIKV with a desorption rate of 99.97% (38.29 ± 2.7 µg ZIKV), which is reusable for at least three times. Therefore, the capture capacity (micrograms of ZIKV captured per milligram of ENM) of polyaniline-hierarchized mats was 2.72 µg ZIKV/mg. The impedance LOD value was determined to be 2.76 µg of ZIKV particles (approximately 6.6 × 103 PFU/mL). As a result, we present a fast small-scale purification system that can simultaneously monitor ZIKV electrochemically and optically.


Subject(s)
Alginates/chemistry , Aniline Compounds/chemistry , Biosensing Techniques/methods , Nanofibers/chemistry , Viral Load/methods , Zika Virus/isolation & purification , Animals , Antibodies, Immobilized/immunology , Antibodies, Viral/immunology , Blood/virology , Chlorocebus aethiops , Electrochemical Techniques , Hydrogels/chemistry , Immunoassay/methods , Limit of Detection , Vero Cells , Zika Virus/immunology
10.
J Pharm Biomed Anal ; 206: 114392, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34607201

ABSTRACT

The projection of new biosensing technologies for genetic identification of SARS-COV-2 is essential in the face of a pandemic scenario. For this reason, the current research aims to develop a label-free flexible biodevice applicable to COVID-19. A nanostructured platform made of polypyrrole (PPy) and gold nanoparticles (GNP) was designed for interfacing the electrochemical signal in miniaturized electrodes of tin-doped indium oxide (ITO). Oligonucleotide primer was chemically immobilized on the flexible transducers for the biorecognition of the nucleocapsid protein (N) gene. Methodological protocols based on cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM) were used to characterize the nanotechnological apparatus. The biosensor's electrochemical performance was evaluated using the SARS-CoV-2 genome and biological samples of cDNA from patients infected with retrovirus at various disease stages. It is inferred that the analytical tool was able to distinguish the expression of SARS-CoV-2 in patients diagnosed with COVID-19 in the early, intermediate and late stages. The biosensor exhibited high selectivity by not recognizing the biological target in samples from patients not infected with SARS-CoV-2. The proposed sensor obtained a linear response range estimated from 800 to 4000 copies µL-1 with a regression coefficient of 0.99, and a detection limit of 258.01 copies µL-1. Therefore, the electrochemical biosensor based on flexible electrode technology represents a promising trend for sensitive molecular analysis of etiologic agent with fast and simple operationalization. In addition to early genetic diagnosis, the biomolecular assay may help to monitor the progression of COVID-19 infection in a novel manner.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Antibodies, Immobilized , Electrochemical Techniques , Electrodes , Gold , Humans , Limit of Detection , Microelectrodes , Polymers , Pyrroles , SARS-CoV-2
11.
Microbiol Res ; 251: 126834, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34364021

ABSTRACT

Biosensors are pre-prepared diagnostic devices composed of at least one biological probe. These devices are envisaged for the practical identification of specific targets of microbiological interest. In recent years, the use of narrow-specific probes such as lectins has been proven to distinguish bacteria and glycoproteins based on their superficial glycomic pattern. For instance, Concanavalin A is a carbohydrate-binding lectin indicated as a narrow-specific biological probe for Gram-negative bacteria. As a drawback, Gram-positive bacteria are frequently overlooked from lectin-based biosensing studies because their identification results in low resolution and overlapped signals. In this work, the authors explore the effect that platform nanostructuration has over the electrochemical response of ConA-based platforms constructed for bacterial detection; one is formed of chitosan-capped magnetic nanoparticles, and another is composed of gold nanoparticle-decorated magnetic nanoparticles. The biosensing platforms were characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) as a function of bacterial concentration. Our results show that probe-target interaction causes variations in the electrical responses of nanostructured transducers. Moreover, the association of gold nanoparticles to magnetic nanoparticles resulted in an electrical enhancement capable of overcoming low resolution and overlapping Gram-positive identification. Both platforms attained a limit of detection of 10 ° CFU mL-1, which is useful for water analyses and sanitation concerns, where low CFU mL-1 are always expected. Although both platforms were able to detect Gram-negative bacteria, Gram-positives were only correctly differentiated by the gold nanoparticle-decorated magnetic nanoparticles, thus demonstrating the positive influence of hierarchically nanostructured platforms.


Subject(s)
Biosensing Techniques , Concanavalin A , Gram-Positive Bacteria , Biosensing Techniques/methods , Concanavalin A/pharmacology , Gold , Gram-Positive Bacteria/classification , Gram-Positive Bacteria/drug effects , Metal Nanoparticles , Transducers
12.
Talanta ; 226: 122118, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33676673

ABSTRACT

Considering the low sensitivity of cytological exams and high costs of the molecular methods, the development of diagnostic tests for effective diagnosis of HPV infections is a priority. In this work, biosensor composed of polypyrrole (PPy) films and gold nanoparticles (AuNPs) was obtained for specific detection of HPV genotypes. The biosensor was developed by using flexible electrodes based on polyethylene terephthalate (PET) strips coated with indium tin oxide (ITO). Polymeric films and AuNPs were obtained by electrosynthesis. Oligonucleotides sequences modified with functional amino groups were designed to recognize HPV gene families strictly. The modified oligonucleotides were chemically immobilized on the nanostructured platform. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for the analysis of the electrode modification and monitoring of molecular hybridization. Electrochemical changes were observed after exposure of the biosensors to plasmid samples and cervical specimens. The biosensor based on the BSH16 probe showed a linear concentration range for target HPV16 gene detection of 100 pg µL-1 to 1 fg µL-1. A limit of detection (LOD) of 0.89 pg µL-1 and limit of quantification (LOQ) of 2.70 pg µL-1 were obtained, with a regression coefficient of 0.98. Screening tests on cervical specimens were performed to evaluate the sensibility and specificity for HPV and its viral family. The expression of a biomarker for tumorigenesis (p53 gene) was also monitored. In this work, a flexible system has been successfully developed for label-free detection of HPV families and p53 gene monitoring with high specificity, selectivity, and sensitivity.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Papillomavirus Infections , Electrochemical Techniques , Electrodes , Gold , Humans , Limit of Detection , Papillomavirus Infections/diagnosis , Polymers , Pyrroles
13.
Talanta ; 220: 121375, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32928401

ABSTRACT

Fungi stand out as primary pathogens present in healthcare-acquired infections, presenting an increased number of cases even using appropriate antifungal therapy. Candida spp. is a predominant microorganism among several fungal pathogens present in the healthcare setting. Candidemia and candidiasis are fungal infections responsible for high morbidity and mortality among ill patients in hospitals. It is noticeable that prolonged hospital stays lead to a higher economic impact and increased risk for developing secondary fungal or even bacterial infections. New fast and sensitive approaches for the detection of Candida species is highly required. Electrochemical biosensors are an excellent alternative to conventional techniques by combining fast analyte detection, low cost, and the possibility of miniaturization. Lectins are carbohydrate-binding proteins with the capability to reach out to the microorganism cell wall. In this work, we proposed the development of an impedimetric biosensor for Candida spp. based on Concanavalin A (ConA) and wheat germ agglutinin (WGA) as recognition agents of the yeast cells. Atomic force microscopy images indicate changes in the biosensor surface after assembly of the molecules and exposure to fungal samples. Electrochemical impedance spectroscopy results revealed a proportional increase of charge transfer resistance (RCT) as fungal CFU increased, where four Candida species were evaluated (Candida krusei, Candida tropicalis, Candida parapsilosis and Candida albicans). The biosensor is useful to differentiate Candida spp. with a detection limit between 102 to 106 CFU mL-1. The obtained biosensor appears as an innovative candidate for the detection and differentiation of pathogenic Candida spp.


Subject(s)
Biosensing Techniques , Candida , Antifungal Agents , Cell Differentiation , Humans , Lectins , Microbial Sensitivity Tests , Pichia
14.
J Pharm Biomed Anal ; 185: 113249, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32193043

ABSTRACT

The human papillomavirus (HPV) is one of the main sexually transmitted pathogens that infect the anogenital epithelium and mucous membranes. HPV genotypes can be classified as high and low oncogenic risk, with infection by the former resulting in cervical cancer in approximately 100 % of the cases. In this work, we developed an ultrasensitive electrochemical biosensor for the detection and identification of different HPV genotypes. A nanostructured platform based on a matrix of polyaniline (PANI) containing gold nanoparticles (AuNps) was designed for the chemical immobilization of a DNA probe capable of recognizing different HPV types. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM) were used to characterize the genosensor. The impedimetric responses indicate that the proposed sensor was able to detect HPV (types 6, 11, 16, 31, 33, 45, and 58) in cervical specimens (cDNA samples). We obtained different profiles of electrochemical responses for the high and low-risk HPV genotypes. By adopting a three-dimensional quantitative analysis of impedance response variables, it was possible to identify the existence of a pattern of association for samples of high oncogenic risk, which may lead to the differential diagnosis of HPV. The biosensor demonstrated an excellent analytical performance for the detection of HPV genotypes with high sensibility and selectivity. The genosensor exhibited a linear range of response in the 1 pg µL-1 to 100 pg µL-1 range. Besides, a limit of detection (LOD) of 2.74 pg µL-1 and 7.43 pg µL-1 was obtained for HPV11 and HPV16, respectively, with regression coefficients of 99.88 % and 99.47 %. Thus, the proposed sensor may serve as a good prognostic indicator for patients infected with papillomavirus.


Subject(s)
Alphapapillomavirus/isolation & purification , Biosensing Techniques/methods , Cervix Uteri/virology , Metal Nanoparticles/chemistry , Papillomavirus Infections/diagnosis , Alphapapillomavirus/genetics , Cervix Uteri/pathology , DNA, Viral/isolation & purification , Diagnosis, Differential , Feasibility Studies , Female , Genotyping Techniques/methods , Gold/chemistry , Humans , Limit of Detection , Metal Nanoparticles/ultrastructure , Microelectrodes , Microscopy, Atomic Force , Molecular Probes/chemistry , Papillomavirus Infections/pathology , Papillomavirus Infections/virology , Prognosis , Uterine Cervical Neoplasms/prevention & control , Uterine Cervical Neoplasms/virology
15.
Talanta ; 208: 120338, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31816752

ABSTRACT

Arboviruses have been emerging as a significant global health problem due to the recurrent epidemics. Arboviruses require the development of new diagnostic devices due to the nonspecific clinical manifestations. Herein, we report a biosensor based on cysteine (Cys), zinc oxide nanoparticles (ZnONp), and Concanavalin A (ConA) lectin to differentiate between arboviruses infections. ConA is capable of interacting with the saccharide components of the viral capsid. In this study, we evaluated the reproducibility, sensitivity, and specificity of the sensor for the virus of Dengue type 2 (DENV2), Zika (ZIKV), Chikungunya (CHIKV), and Yellow fever (YFV). Atomic force microscopy measurements confirmed the electrode surface modification and revealed a heterogeneous topography during the biorecognition process. Cyclic voltammetry (CV) and impedance spectroscopy (EIS) were used to characterize the biosensor. The blockage of the oxidation-reduction process is related to the formation of Cys-ZnONp-ConA system on the electroactive area and its subsequent interaction with viral glycoproteins. The sensor exhibited a linear response to different concentrations of the studied arboviruses. Our study demonstrates that ConA lectin recognizes the structural glycoproteins of the DENV2, ZIKV, CHIKV, and YFV. DENV2 is the most structurally similar to ZIKV. Our results have shown that the impedimetric response correlates with the structural glycoproteins, as follow: DENV2 (18.6 kΩ) > ZIKV (14.6 kΩ) > CHIKV (6.86 kΩ) > YFV (5.98 kΩ). The homologous structural regions contribute to ConA-arboviruses recognition. Our results demonstrate the use of the proposed system for the development of biosensors for arboviruses infections.


Subject(s)
Arbovirus Infections/diagnosis , Arboviruses/metabolism , Biosensing Techniques/methods , Concanavalin A/chemistry , Electrochemistry/methods , Electrodes , Metal Nanoparticles/chemistry , Arbovirus Infections/blood , Arbovirus Infections/virology , Arboviruses/isolation & purification , Chikungunya Fever/blood , Chikungunya Fever/diagnosis , Chikungunya Fever/virology , Chikungunya virus/isolation & purification , Chikungunya virus/metabolism , Cysteine/chemistry , Dengue/blood , Dengue/diagnosis , Dengue/virology , Dengue Virus/isolation & purification , Dengue Virus/metabolism , Diagnosis, Differential , Glucose/analysis , Humans , Mannose/analysis , Yellow Fever/blood , Yellow Fever/diagnosis , Yellow Fever/virology , Yellow fever virus/isolation & purification , Yellow fever virus/metabolism , Zika Virus/isolation & purification , Zika Virus/metabolism , Zika Virus Infection/blood , Zika Virus Infection/diagnosis , Zika Virus Infection/virology , Zinc Oxide/chemistry
16.
Talanta ; 204: 395-401, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31357311

ABSTRACT

Schistosomiasis is a neglected tropical disease with a worldwide prevalence. Neuroschistosomiasis is the most severe presentation of the disease and affects the central nervous system. In this work, Schistosoma mansoni detection was based on self-assembled layers of 3-mercaptopropyltrimethoxysilane (MPTS) and electrosynthesized gold nanoparticles (AuNPs). The DNA probe was chemisorbed onto AuNPs. The biosensor was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The impedimetric response of the MPTS-AuNPs-DNAprobe system indicates an effective modification of the electrode surface. Topographical atomic force microscopy images were used to characterize the self-assembled layers on the gold electrode surface. The proposed biosystem was able to recognize the S. mansoni genome sequence at different concentrations in samples of urine, cerebrospinal fluid, and serum. Several concentration ranges were evaluated: urine (27-50 pg µL-1), cerebrospinal fluid (25-60 pg µL-1), and serum (27-42 pg µL-1). The limit detection (LOD) of the biosensor was 0.6 pg µL-1. The developed label-free genosensor was able to detect small concentrations of S. mansoni DNA in complex biological fluids.


Subject(s)
DNA Probes/chemistry , DNA, Helminth/analysis , Metal Nanoparticles/chemistry , Schistosoma mansoni/isolation & purification , Animals , Biosensing Techniques/methods , DNA Probes/genetics , DNA, Helminth/genetics , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Humans , Limit of Detection , Nucleic Acid Hybridization , Organosilicon Compounds , Schistosoma mansoni/genetics , Silanes/chemistry
17.
Colloids Surf B Biointerfaces ; 171: 413-418, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30071483

ABSTRACT

Alkaline phosphatase (ALP) is an enzyme that plays an important role in bone mineralization and skeletal growth. Variations in physiological levels of ALP have been correlated to diseases such as osteomalacia, Paget's disease and arterial calcifications. In this context, the integration of carbon nanotubes (CNT) within osteointegration implants has shown to increase ALP's mineralization activity in virtue of their surface chemistry and their morphological resemblance to collagen nanofibers. In this study we present the development and analytical application of an impedimetric immunosensor based in gold nanoparticle-decorated CNT, which characteristics are desirable in implantable biosensors. The device effectively detects ALP within blood serum, a complex biological fluid where most expressed proteins can be found. Robustness and high sensitivity were attained by immobilizing covalently anti-ALP antibody as a specific probe towards ALP. Cyclic voltammetry, electrochemical impedance spectroscopy and atomic force microscopy were used to characterize the sensor system throughout mounting steps and real sample testing. Impedimetric responses were adjusted to a theoretical electrical circuit and charge transfer resistance showed to be an adequate parameter to evaluate the biorecognition process of the analyte. Additionally, amperometrical current variation and changes in topography found over the surface after positive samples evidenced biorecognition. The final biosensor showed excellent performance with two linear ranges from 0.5 to 50 IU.L-1 and from 100 to 600 IU.L-1; limits of detection were calculated as 0.25 and 84.6 IU.L-1 respectively with a relative standard deviation lower than 5%. The device was found to be selective, avoiding protein c, a potential interferer occurring during inflammatory processes. The proposed strategy is promising for osteogenic applications where it can improve osteointegration implants by monitoring ALP activity.


Subject(s)
Alkaline Phosphatase/analysis , Biosensing Techniques , Electrochemical Techniques , Immunoassay , Nanostructures/chemistry , Alkaline Phosphatase/metabolism , Humans , Particle Size , Surface Properties
18.
Mater Sci Eng C Mater Biol Appl ; 90: 664-672, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29853137

ABSTRACT

An alternative to accelerate the osseointegration on titanium dioxide nanotubes (TNTs) used in osseointegrated implants is through the functionalization of these nanostructured surfaces with biomolecules. In this work, we immobilized a lectin with recognized mitogenic activity, the Cramoll lectin, extracted from Cratylia mollis seeds, on surfaces modified by TNTs. For the immobilization of Cramoll on TNTs surfaces, we used the Layer-by-Layer technique (LbL) by growing five alternate layers of poly(allylamine) hydrochloride (PAH) and poly(acrylic) acid (PAA); lastly we incubated the lectin, at different concentrations, with the TNTs-LbL. Before and after the immobilization procedures, the substrate surfaces were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and, electrochemical impedance spectroscopy (EIS). We also evaluated the Cramoll activity after immobilization on TNTs by using the lectin interaction with ovalbumin. The lectin did not lose its biological activity, even after immobilization onto nanotubular arrays. In addition, we observed an increase osteoblast-like cell adhesion on the TNTs-LbL-Cramoll system when compared to the bare TNTs surfaces. Moreover, a significative cell proliferation was identified on the substrates when Cramoll was immobilized at concentrations of 80, 160 and 320 µg/mL after 48 h of incubation by using the resazurin assay. Our results suggest that Cramoll was efficiently immobilized on a nanotubular array and this new platform presents a great potential to be tested in implantology.


Subject(s)
Fabaceae/chemistry , Lectins/chemistry , Nanotubes/chemistry , Osteoblasts/cytology , Seeds/chemistry , Titanium/chemistry , Cell Adhesion/physiology , Cell Proliferation/physiology , Electrochemistry
19.
Colloids Surf B Biointerfaces ; 169: 72-81, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29751343

ABSTRACT

The use of central venous catheters (CVC) is highly associated with nosocomial blood infections and its use largely requires a systematic assessment of benefits and risks. Bacterial contamination of these tubes is frequent and may result in development of microbial consortia also known as biofilm. The woven nature of biofilm provides a practical defense against antimicrobial agents, facilitating bacterial dissemination through the patient's body and development of antimicrobial resistance. In this work, the authors describe the modification of CVC tubing by immobilizing Fe3O4-aminosilane core-shell nanoparticles functionalized with antimicrobial peptide clavanin A (clavA) as an antimicrobial prophylactic towards Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. Its anti-biofilm-attachment characteristic relies in clavA natural activity to disrupt the bacterial lipidic membrane. The aminosilane shell prevents iron leaching, which is an important nutrient for bacterial growth. Fe3O4-clavA-modified CVCs showed to decrease Gram-negative bacteria attachment up to 90% when compared to control clean CVC. Additionally, when hyperthermal treatment is triggered for 5 min at 80 °C in a tubing that already presents bacterial biofilm (CVC-BF), the viability of attached bacteria reduces up to 88%, providing an efficient solution to avoid changing catheter.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Blood Proteins/pharmacology , Ferrosoferric Oxide/pharmacology , Nanoparticles/chemistry , Silanes/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Blood Proteins/chemistry , Escherichia coli/drug effects , Ferrosoferric Oxide/chemistry , Klebsiella pneumoniae/drug effects , Microbial Sensitivity Tests , Particle Size , Pseudomonas aeruginosa/drug effects , Silanes/chemistry , Staphylococcus aureus/drug effects , Surface Properties
20.
Colloids Surf B Biointerfaces ; 160: 724-731, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29035820

ABSTRACT

Electrical impedance spectroscopy (EIS) appears a promising label-free methodology for the investigation of processes related to the aggregation of macromolecules in solution. Here, we explore the EIS technique as a convenient tool for studying the irreversible aggregation of human insulin and describing its corresponding fibrillation kinetics. The in situ measurement of the electrical response of pure insulin solutions at 60°C allows for the real-time monitoring of the protein fibrillation as a function of the incubation time. The fitting of the EIS data through an equivalent circuit based on a constant phase element provides a simple set of electric parameters whose abrupt changes can be associated to transitions occurring in the organization of the macromolecules. For establishing the reliability of the method proposed, we have compared the protein aggregation profile collected from the EIS data to that obtained from a conventional fluorescence methodology where Thioflavin T (ThT) is used as a dye probe. The description of the fibrillation process is quite similar in both cases, since characteristic times of the same order were found for the consecutive processes associated to the initial lag phase of insulin fibrillation, to the rapid growth of amyloidal aggregates and to the final saturation step. Our results suggest that in situ EIS can be considered as a promising approach for the real-time label-free monitoring of protein fibril formation.


Subject(s)
Amyloid/chemistry , Dielectric Spectroscopy/methods , Insulin/chemistry , Protein Aggregation, Pathological , Humans , Kinetics , Protein Aggregates , Reproducibility of Results , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...