Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35121656

ABSTRACT

Toxin-antitoxin (TA) gene pairs are ubiquitous in microbial chromosomal genomes and plasmids as well as temperate bacteriophages. They act as regulatory switches, with the toxin limiting the growth of bacteria and archaea by compromising diverse essential cellular targets and the antitoxin counteracting the toxic effect. To uncover previously uncharted TA diversity across microbes and bacteriophages, we analyzed the conservation of genomic neighborhoods using our computational tool FlaGs (for flanking genes), which allows high-throughput detection of TA-like operons. Focusing on the widespread but poorly experimentally characterized antitoxin domain DUF4065, our in silico analyses indicated that DUF4065-containing proteins serve as broadly distributed antitoxin components in putative TA-like operons with dozens of different toxic domains with multiple different folds. Given the versatility of DUF4065, we have named the domain Panacea (and proteins containing the domain, PanA) after the Greek goddess of universal remedy. We have experimentally validated nine PanA-neutralized TA pairs. While the majority of validated PanA-neutralized toxins act as translation inhibitors or membrane disruptors, a putative nucleotide cyclase toxin from a Burkholderia prophage compromises transcription and translation as well as inducing RelA-dependent accumulation of the nucleotide alarmone (p)ppGpp. We find that Panacea-containing antitoxins form a complex with their diverse cognate toxins, characteristic of the direct neutralization mechanisms employed by Type II TA systems. Finally, through directed evolution, we have selected PanA variants that can neutralize noncognate TA toxins, thus experimentally demonstrating the evolutionary plasticity of this hyperpromiscuous antitoxin domain.


Subject(s)
Antitoxins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Protein Domains/genetics , Toxin-Antitoxin Systems/genetics , Bacterial Proteins/genetics , Burkholderia/genetics , Gene Expression Regulation, Bacterial/genetics , Guanosine Pentaphosphate/genetics , Operon/genetics , Prophages/genetics
2.
Proc Natl Acad Sci U S A ; 117(19): 10500-10510, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32345719

ABSTRACT

Under stressful conditions, bacterial RelA-SpoT Homolog (RSH) enzymes synthesize the alarmone (p)ppGpp, a nucleotide second messenger. (p)ppGpp rewires bacterial transcription and metabolism to cope with stress, and, at high concentrations, inhibits the process of protein synthesis and bacterial growth to save and redirect resources until conditions improve. Single-domain small alarmone synthetases (SASs) are RSH family members that contain the (p)ppGpp synthesis (SYNTH) domain, but lack the hydrolysis (HD) domain and regulatory C-terminal domains of the long RSHs such as Rel, RelA, and SpoT. We asked whether analysis of the genomic context of SASs can indicate possible functional roles. Indeed, multiple SAS subfamilies are encoded in widespread conserved bicistronic operon architectures that are reminiscent of those typically seen in toxin-antitoxin (TA) operons. We have validated five of these SASs as being toxic (toxSASs), with neutralization by the protein products of six neighboring antitoxin genes. The toxicity of Cellulomonas marina toxSAS FaRel is mediated by the accumulation of alarmones ppGpp and ppApp, and an associated depletion of cellular guanosine triphosphate and adenosine triphosphate pools, and is counteracted by its HD domain-containing antitoxin. Thus, the ToxSAS-antiToxSAS system with its multiple different antitoxins exemplifies how ancient nucleotide-based signaling mechanisms can be repurposed as TA modules during evolution, potentially multiple times independently.


Subject(s)
Bacteria/growth & development , Guanosine Pentaphosphate/metabolism , Toxin-Antitoxin Systems/physiology , Adenine Nucleotides/metabolism , Bacteria/metabolism , Bacterial Proteins/metabolism , Databases, Genetic , Gene Expression Regulation, Bacterial/genetics , Guanosine Tetraphosphate/metabolism , Guanosine Triphosphate/metabolism , Ligases/metabolism , Pyrophosphatases/metabolism , Signal Transduction , Stress, Physiological/physiology
3.
Nucleic Acids Res ; 46(4): 1973-1983, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29390134

ABSTRACT

During amino acid starvation the Escherichia coli stringent response factor RelA recognizes deacylated tRNA in the ribosomal A-site. This interaction activates RelA-mediated synthesis of alarmone nucleotides pppGpp and ppGpp, collectively referred to as (p)ppGpp. These two alarmones are synthesized by addition of a pyrophosphate moiety to the 3' position of the abundant cellular nucleotide GTP and less abundant nucleotide GDP, respectively. Using untagged native RelA we show that allosteric activation of RelA by pppGpp increases the efficiency of GDP conversion to achieve the maximum rate of (p)ppGpp production. Using a panel of ribosomal RNA mutants, we show that the A-site finger structural element of 23S rRNA helix 38 is crucial for RelA binding to the ribosome and consequent activation, and deletion of the element severely compromises (p)ppGpp accumulation in E. coli upon amino acid starvation. Through binding assays and enzymology, we show that E. coli RelA does not form a stable complex with, and is not activated by, deacylated tRNA off the ribosome. This indicates that in the cell, RelA first binds the empty A-site and then recruits tRNA rather than first binding tRNA and then binding the ribosome.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , GTP Pyrophosphokinase/metabolism , Ligases/metabolism , RNA, Ribosomal, 23S/chemistry , Enzyme Activation , Escherichia coli Proteins/chemistry , GTP Pyrophosphokinase/chemistry , Ligases/chemistry , Mutation , Peptide Elongation Factor G , Protein Binding , RNA, Ribosomal, 23S/metabolism , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Ribosomes/metabolism
4.
Sci Rep ; 7(1): 11022, 2017 09 08.
Article in English | MEDLINE | ID: mdl-28887466

ABSTRACT

Here we describe an HPLC-based method to quantify bacterial housekeeping nucleotides and the signaling messengers ppGpp and pppGpp. We have replicated and tested several previously reported HPLC-based approaches and assembled a method that can process 50 samples in three days, thus making kinetically resolved experiments feasible. The method combines cell harvesting by rapid filtration, followed by acid extraction, freeze-drying with chromatographic separation. We use a combination of C18 IPRP-HPLC (GMP unresolved and co-migrating with IMP; GDP and GTP; AMP, ADP and ATP; CTP; UTP) and SAX-HPLC in isocratic mode (ppGpp and pppGpp) with UV detection. The approach is applicable to bacteria without the requirement of metabolic labelling with 32P-labelled radioactive precursors. We applied our method to quantify nucleotide pools in Escherichia coli BW25113 K12-strain both throughout the growth curve and during acute stringent response induced by mupirocin. While ppGpp and pppGpp levels vary drastically (40- and ≥8-fold, respectively) these changes are decoupled from the quotients of the housekeeping pool and guanosine and adenosine housekeeping nucleotides: NTP/NDP/NMP ratio remains stable at 6/1/0.3 during both normal batch culture growth and upon acute amino acid starvation.


Subject(s)
Chromatography, High Pressure Liquid/methods , Escherichia coli/chemistry , Guanosine Pentaphosphate/analysis , Guanosine Tetraphosphate/analysis , Nucleotides/analysis , Escherichia coli/drug effects , Escherichia coli/growth & development , Mupirocin/metabolism , Protein Synthesis Inhibitors/metabolism
5.
Article in English | MEDLINE | ID: mdl-28115345

ABSTRACT

The nucleotide (p)ppGpp is a key regulator of bacterial metabolism, growth, stress tolerance, and virulence. During amino acid starvation, the Escherichia coli (p)ppGpp synthetase RelA is activated by deacylated tRNA in the ribosomal A-site. An increase in (p)ppGpp is believed to drive the formation of antibiotic-tolerant persister cells, prompting the development of strategies to inhibit (p)ppGpp synthesis. We show that in a biochemical system from purified E. coli components, the antibiotic thiostrepton efficiently inhibits RelA activation by the A-site tRNA. In bacterial cultures, the ribosomal inhibitors thiostrepton, chloramphenicol, and tetracycline all efficiently abolish accumulation of (p)ppGpp induced by the Ile-tRNA synthetase inhibitor mupirocin. This abolishment, however, does not reduce the persister level. In contrast, the combination of dihydrofolate reductase inhibitor trimethoprim with mupirocin, tetracycline, or chloramphenicol leads to ampicillin tolerance. The effect is independent of RelA functionality, specific to ß-lactams, and not observed with the fluoroquinolone norfloxacin. These results refine our understanding of (p)ppGpp's role in antibiotic tolerance and persistence and demonstrate unexpected drug interactions that lead to tolerance to bactericidal antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Tolerance , Guanosine Tetraphosphate/analogs & derivatives , Ligases/genetics , Thiostrepton/pharmacology , beta-Lactams/pharmacology , Chloramphenicol/pharmacology , Drug Interactions , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Guanosine Tetraphosphate/metabolism , Isoleucine-tRNA Ligase/genetics , Ligases/antagonists & inhibitors , Ligases/metabolism , Mupirocin/pharmacology , Protein Biosynthesis/drug effects , RNA, Transfer/genetics , RNA, Transfer/metabolism , Ribosomes/drug effects , Ribosomes/metabolism , Subcellular Fractions/chemistry , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism , Tetracycline/pharmacology , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Trimethoprim/pharmacology
6.
Sci Rep ; 6: 22308, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26923949

ABSTRACT

The transition of Escherichia coli from the exponential into the stationary phase of growth induces the stringent response, which is mediated by the rapid accumulation of the alarmone nucleotide (p)ppGpp produced by the enzyme RelA. The significance of RelA's functionality during the transition in the opposite direction, i.e. from the stationary phase into new exponential growth, is less well understood. Here we show that the relaxed strain, i.e. lacking the relA gene, displays a relative delay in regrowth during the new exponential growth phase in comparison with the isogenic wild type strain. The severity of the effect is a function of both the carbon source and amino acid composition of the outgrowth media. As a result, the loss of RelA functionality increases E. coli tolerance to the bactericidal antibiotic ampicillin during growth resumption in fresh media in a medium-specific way. Taken together, our data underscore the crucial role of medium composition and growth conditions for studies of the role of individual genes and regulatory networks in bacterial phenotypic tolerance to antibiotics.


Subject(s)
Ampicillin Resistance , Ampicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/physiology , Amino Acids/metabolism , Carbohydrate Metabolism , Genes, Bacterial , Microbial Sensitivity Tests , Mutation , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...