Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
2.
J Fungi (Basel) ; 7(4)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805369

ABSTRACT

Fungal keratitis is difficult to treat, especially Fusarium keratitis. In vitro studies show that chlorhexidine could be an interesting option as monotherapy. We describe a case series of four patients (four eyes) with Fusarium keratitis at Radboud University Medical Center (Nijmegen, the Netherlands). The patients were treated with chlorhexidine 0.02% eye drops. The in vitro activity of eight antifungals and chlorhexidine was determined according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) broth microdilution method. We also reviewed the literature on the use of chlorhexidine in the treatment of fungal keratitis. Topical chlorhexidine was well tolerated, and all patients showed complete resolution of the keratitis upon treatment with chlorhexidine. A PubMed search of the available literature was conducted (last search 8 March 2020) and yielded two randomized clinical trials (natamycin versus chlorhexidine) and one case report addressing the treatment of fungal keratitis with chlorhexidine. Chlorhexidine was found to be safe with regard to toxicity and to be superior to natamycin in the clinical trials. Chlorhexidine showed in vitro fungicidal activity against Fusarium and clinical effectiveness in our cases, supporting further clinical evaluation. Advantages of chlorhexidine are its topical application, its general availability, its low costs, its broad-spectrum activity, and its fungicidal mechanism of action at low concentrations.

3.
Article in English | MEDLINE | ID: mdl-32318355

ABSTRACT

Introduction: Recognizing fungal keratitis based on the clinical presentation is challenging. Topical therapy may be initiated with antibacterial agents and corticosteroids, thus delaying the fungal diagnosis. As a consequence, the fungal infection may progress ultimately leading to more severe infection and blindness. We noticed an increase of fungal keratitis cases in the Netherlands, especially caused by Fusarium species, which prompted us to conduct a retrospective cohort study, aiming to describe the epidemiology, clinical management, and outcome. Materials and Methods: As fungi are commonly sent to the Dutch mycology reference laboratory for identification and in vitro susceptibility testing, the fungal culture collection was searched for Fusarium isolates from corneal scrapings, corneal swabs, and from contact lens (CL) fluid, between 2005 and 2016. All Fusarium isolates had been identified up to species level through sequencing of the ITS1-5.8S-ITS2 region of the rDNA and TEF1 gene. Antifungal susceptibility testing was performed according to the EUCAST microbroth dilution reference method. Antifungal agents tested included amphotericin B, voriconazole, and natamycin. In addition, susceptibility to the antisepticum chlorhexidine was tested. Ophthalmologists were approached to provide demographic and clinical data of patients identified through a positive culture. Results: Between 2005 and 2016, 89 cases of Fusarium keratitis from 16 different hospitals were identified. The number of cases of Fusarium keratitis showed a significant increase over time (R2 = 0.9199), with one case in the first 5 years (2005-2009) and multiple cases from 2010 and onwards. The male to female ratio was 1:3 (p = 0.014). Voriconazole was the most frequently used antifungal agent, but treatment strategies differed greatly between cases including five patients that were treated with chlorhexidine 0.02% monotherapy. Keratitis management was not successful in 27 (30%) patients, with 20 (22%) patients requiring corneal transplantation and seven (8%) requiring enucleation or evisceration. The mean visual acuity (VA) was moderately impaired with a logMAR of 0.8 (95% CI 0.6-1, Snellen equivalent 0.16) at the time of Fusarium culture. Final average VA was within the range of normal vision [logMAR 0.2 (95% CI 0.1-0.3), Snellen equivalent 0.63]. CL wear was reported in 92.9% of patients with Fusarium keratitis. The time between start of symptoms and diagnosis of fungal keratitis was significantly longer in patients with poor outcome as opposed to those with (partially) restored vision; 22 vs. 15 days, respectively (mean, p = 0.024). Enucleation/evisceration occurred in patients with delayed fungal diagnosis of more than 14 days after initial presentation of symptoms. The most frequently isolated species was F. oxysporum (24.7%) followed by F. solani sensu stricto (18%) and F. petroliphilum (9%). The lowest MICs were obtained with amphotericin B followed by natamycin, voriconazole, and chlorhexidine. Conclusion: Although Fusarium keratitis remains a rare complication of CL wear, we found a significant increase of cases in the Netherlands. The course of infection may be severe and fungal diagnosis was often delayed. Antifungal treatment strategies varied widely and the treatment failure rate was high, requiring transplantation or even enucleation. Our study underscores the need for systematic surveillance of fungal keratitis and a consensus management protocol.


Subject(s)
Eye Infections, Fungal , Fusarium , Keratitis , Antifungal Agents/therapeutic use , Eye Infections, Fungal/diagnosis , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/epidemiology , Female , Humans , Keratitis/diagnosis , Keratitis/drug therapy , Keratitis/epidemiology , Male , Netherlands/epidemiology , Retrospective Studies
4.
Front Microbiol ; 10: 1970, 2019.
Article in English | MEDLINE | ID: mdl-31551947

ABSTRACT

Aspergillus fumigatus is considered a common causative agent of human fungal infections. A restricted number of virulence factors have been described, and none of them lead to a differentiation in the virulence level among different strains. Variations in the virulence phenotype depending on the isolate origin, measured as survival percentage in animal infection models, have been previously reported. In this study, we analyzed the whole-genome sequence of A. fumigatus isolates from clinical and environmental origins to determine their virulence genetic content. The sample included four isolates sequenced at the University Medical Center Groningen (UMCG), three clinical (two of them isolated from the same patient) and the experimental strain B5233, and the draft genomes of one reference strain, two environmental and two clinical isolates obtained from a public database. The fungal genomes were screened for the presence of virulence-related genes (VRGs) using an in-house database of 244 genes related to thermotolerance, resistance to immune responses, cell wall formation, nutrient uptake, signaling and regulation, and production of toxins and secondary metabolites and allergens. In addition, we performed a variant calling analysis to compare the isolates sequenced at the UMCG and investigated their genetic relatedness using the TRESP (Tandem Repeats located within Exons of Surface Protein coding genes) genotyping method. We neither observed a difference in the virulence genetic content between the clinical isolates causing an invasive infection and a colonizing clinical isolate nor between isolates from the clinical and environmental origin. The four novel A. fumigatus sequences had a different TRESP genotype and a total number of genetic variants ranging from 48,590 to 68,352. In addition, a comparative genomics analysis showed the presence of single nucleotide polymorphisms in VRGs and repetitive genetic elements located next to VRG groups, which could influence the regulation of these genes. In conclusion, our genomic analysis revealed a high genetic diversity between environmental and clinical A. fumigatus isolates, as well as between clinical isolates from the same patient, indicating an infection with a mixed-population in the latter case. However, all isolates had a similar virulence genetic content, demonstrating their pathogenic potential at least at the genomic level.

5.
Article in English | MEDLINE | ID: mdl-31182529

ABSTRACT

Fungal keratitis is a common but severe eye infection in tropical and subtropical areas of the world. In regions with a temperate climate, the frequency of infection is rising in patients with contact lenses and following trauma. Early and adequate therapy is important to prevent disease progression and loss of vision. The management of Fusarium keratitis is complex, and the optimal treatment is not well defined. We investigated the in vitro activity of chlorhexidine and seven antifungal agents against a well-characterized collection of Fusarium isolates recovered from patients with Fusarium keratitis. The fungus culture collection of the Center of Expertise in Mycology Radboudumc/CWZ was searched for Fusarium isolates that were cultured from cornea scrapings, ocular biopsy specimens, eye swabs, and contact lens fluid containers from patients with suspected keratitis. The Fusarium isolates that were cultured from patients with confirmed keratitis were all identified using conventional and molecular techniques. Antifungal susceptibility testing was performed according to the EUCAST broth microdilution reference method. The antifungal agents tested included amphotericin B, voriconazole, posaconazole, miconazole, natamycin, 5-fluorocytosine, and caspofungin. In addition, the activity of chlorhexidine was determined. The fungal culture collection contained 98 Fusarium isolates of confirmed fungal keratitis cases from 83 Dutch patients and 15 Tanzanian patients. The isolates were collected between 2007 and 2017. Fusarium oxysporum (n = 24, 24.5%) was the most frequently isolated species followed by Fusarium solanisensu stricto (n = 18, 18.4%) and Fusarium petroliphilum (n = 11, 11.2%). Amphotericin B showed the most favorable in vitro inhibition of Fusarium species followed by natamycin, voriconazole, and chlorhexidine, while 5-fluorocytosine, posaconazole, miconazole, and caspofungin showed no relevant inhibiting effect. However, chlorhexidine showed fungicidal activity against 90% of F. oxysporum strains and 100% of the F. solani strains. Our study supports the clinical efficacy of chlorhexidine and therefore warrants its further clinical evaluation for primary therapy of fungal keratitis, particularly in low and middle income countries where fungal keratitis is much more frequent and, currently, antifungal eye drops are often unavailable.


Subject(s)
Antifungal Agents/pharmacology , Chlorhexidine/pharmacology , Fusarium/drug effects , Fusarium/pathogenicity , Keratitis/microbiology , Amphotericin B/pharmacology , Caspofungin/pharmacology , Flucytosine/pharmacology , Fusariosis/microbiology , Humans , Miconazole/pharmacology , Microbial Sensitivity Tests , Natamycin/pharmacology , Triazoles/pharmacology , Voriconazole/pharmacology
6.
Ned Tijdschr Geneeskd ; 1632019 05 16.
Article in Dutch | MEDLINE | ID: mdl-31120209

ABSTRACT

Infectious keratitis in contact lens wearers Infectious keratitis is a sight-threatening complication in contact lens wearers. The infection is most frequently caused by bacteria (Pseudomonas aeruginosa). However, fungi or Acanthamoeba are found in increasing frequency. Three cases illustrate a characteristic course: patient A (11-year-old male) was treated for three weeks before the characteristic aspect of Acanthamoeba keratitis was recognized and confirmed. Patient B (45-year-old female) developed a severe corneal ulcer within 4 days; microbiological diagnostics confirmed Pseudomonas aeruginosa keratitis. Examination of patient C (27-year-old female) showed an infiltrate with satellites, typical of fungal keratitis. It is important to check the use of contact lenses in patients with keratitis. Referral to the ophthalmologist is mandatory: immediate in cases with an infiltrate. A dentritiform epithelial lesion in a contact lens wearer is indicative of Acanthamoeba keratitis, whereas fungal keratitis shows satellites or feathering edges. Steroids may only be prescribed by an ophthalmologist after confirmation of the causative agent.


Subject(s)
Acanthamoeba Keratitis/diagnosis , Contact Lenses/adverse effects , Keratitis/microbiology , Pseudomonas Infections/complications , Acanthamoeba/isolation & purification , Child , Female , Humans , Male , Middle Aged , Pseudomonas aeruginosa/isolation & purification
8.
BMC Infect Dis ; 16: 148, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27074951

ABSTRACT

BACKGROUND: Trichosporon species are ubiquitously spread and known to be part of the normal human flora of the skin and gastrointestinal tract. Trichosporon spp. normally cause superficial infections. However, in the past decade Trichosporon spp. are emerging as opportunistic agents of invasive fungal infections, particularly in severely immunocompromised patients. Clinical isolates are usually sensitive to triazoles, but strains resistant to multiple triazoles have been reported. CASE PRESENTATION: We report a high-level pan-azole resistant Trichosporon dermatis isolate causing an invasive cholangitis in a patient after liver re-transplantation. This infection occurred despite of fluconazole and low dose amphotericin B prophylaxis, and treatment with combined liposomal amphotericin B and voriconazole failed. CONCLUSION: This case and recent reports in literature show that not only bacteria are evolving towards pan-resistance, but also pathogenic yeasts. Prudent use of antifungals is important to withstand emerging antifungal resistance.


Subject(s)
Trichosporonosis/diagnosis , Amphotericin B/therapeutic use , Antifungal Agents/therapeutic use , Cholangitis/diagnosis , Cholangitis/drug therapy , Cholangitis/microbiology , Drug Resistance, Fungal , Hepatic Encephalopathy/diagnosis , Humans , Liver Cirrhosis/therapy , Liver Transplantation , Male , Microbial Sensitivity Tests , Middle Aged , Peritonitis/diagnosis , Phylogeny , Trichosporon/classification , Trichosporon/drug effects , Trichosporon/isolation & purification , Trichosporonosis/drug therapy , Trichosporonosis/microbiology , Voriconazole/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...