Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 50(2): 307-316, 2018 02.
Article in English | MEDLINE | ID: mdl-29358649

ABSTRACT

To characterize the genetic determinants of resistance to antituberculosis drugs, we performed a genome-wide association study (GWAS) of 6,465 Mycobacterium tuberculosis clinical isolates from more than 30 countries. A GWAS approach within a mixed-regression framework was followed by a phylogenetics-based test for independent mutations. In addition to mutations in established and recently described resistance-associated genes, novel mutations were discovered for resistance to cycloserine, ethionamide and para-aminosalicylic acid. The capacity to detect mutations associated with resistance to ethionamide, pyrazinamide, capreomycin, cycloserine and para-aminosalicylic acid was enhanced by inclusion of insertions and deletions. Odds ratios for mutations within candidate genes were found to reflect levels of resistance. New epistatic relationships between candidate drug-resistance-associated genes were identified. Findings also suggest the involvement of efflux pumps (drrA and Rv2688c) in the emergence of resistance. This study will inform the design of new diagnostic tests and expedite the investigation of resistance and compensatory epistatic mechanisms.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Extensively Drug-Resistant Tuberculosis/microbiology , Genome, Bacterial , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/microbiology , Antitubercular Agents/therapeutic use , DNA, Bacterial/analysis , Extensively Drug-Resistant Tuberculosis/drug therapy , Genetic Variation , Genome-Wide Association Study , Geography , Humans , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/isolation & purification , Phylogeny , Sequence Analysis, DNA , Tuberculosis, Multidrug-Resistant/drug therapy
2.
BMC Genomics ; 17: 151, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26923687

ABSTRACT

BACKGROUND: Approximately 10% of the Mycobacterium tuberculosis genome is made up of two families of genes that are poorly characterized due to their high GC content and highly repetitive nature. The PE and PPE families are typified by their highly conserved N-terminal domains that incorporate proline-glutamate (PE) and proline-proline-glutamate (PPE) signature motifs. They are hypothesised to be important virulence factors involved with host-pathogen interactions, but their high genetic variability and complexity of analysis means they are typically disregarded in genome studies. RESULTS: To elucidate the structure of these genes, 518 genomes from a diverse international collection of clinical isolates were de novo assembled. A further 21 reference M. tuberculosis complex genomes and long read sequence data were used to validate the approach. SNP analysis revealed that variation in the majority of the 168 pe/ppe genes studied was consistent with lineage. Several recombination hotspots were identified, notably pe_pgrs3 and pe_pgrs17. Evidence of positive selection was revealed in 65 pe/ppe genes, including epitopes potentially binding to major histocompatibility complex molecules. CONCLUSIONS: This, the first comprehensive study of the pe and ppe genes, provides important insight into M. tuberculosis diversity and has significant implications for vaccine development.


Subject(s)
Genes, Bacterial , Multigene Family , Mycobacterium tuberculosis/genetics , Polymorphism, Single Nucleotide , Recombination, Genetic , DNA, Bacterial/genetics , Evolution, Molecular , Genome, Bacterial , Genomics/methods , Genotype , Mutation , Phylogeny , Selection, Genetic , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...