Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
An Acad Bras Cienc ; 95(suppl 1): e20220850, 2023.
Article in English | MEDLINE | ID: mdl-37466539

ABSTRACT

Brazil is located between the Equator and Tropic of Capricorn, which allows diverse climates, reliefs, and habitats for arthropods, which sting represents a risk to human health and a public health issue. This manuscript updates the epidemiological data of cases of human envenoming by spiders, scorpions, and insects with medical relevance in Brazil from 2010 to 2021. Epidemiological data were taken using the Brazilian Notifiable Diseases Information System. Statistics of non-parametric data used the Kruskal-Wallis followed by the Nemenyi test. On average, more than 145,000 envenomation and 145 deaths are recorded annually, and more than 60% of deaths are caused by scorpion bites. When the number of deaths was pondered by the number of cases with each arthropod, bees kill the most. Most stings cause mild symptoms and affect men of working age. The incidence decreases during the colder months, which is better noticeable in regions with well-defined seasons. The distribution is distinct among the regions: Southeast, Northeast, and South have the highest rate of bites. The growing number of cases of envenomation reported annually is a serious public health concern, especially involving scorpions, and highlights the importance of studying arthropod venom and improving the therapies.


Subject(s)
Arthropods , Scorpion Stings , Male , Humans , Animals , Bees , Brazil/epidemiology , Public Health , Scorpion Stings/epidemiology , Scorpions
2.
Biomed Pharmacother ; 165: 115173, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37453200

ABSTRACT

Nav1.1 is an important pharmacological target as this voltage-gated sodium channel is involved in neurological and cardiac syndromes. Channel activators are actively sought to try to compensate for haploinsufficiency in several of these pathologies. Herein we used a natural source of new peptide compounds active on ion channels and screened for drugs capable to inhibit channel inactivation as a way to compensate for decreased channel function. We discovered that JzTx-34 is highly active on Nav1.1 and subsequently performed a full structure-activity relationship investigation to identify its pharmacophore. These experiments will help interpret the mechanism of action of this and formerly identified peptides as well as the future identification of new peptides. We also reveal structural determinants that make natural ICK peptides active against Nav1.1 challenging to synthesize. Altogether, the knowledge gained by this study will help facilitate the discovery and development of new compounds active on this critical ion channel target.


Subject(s)
Peptides , Voltage-Gated Sodium Channels , Humans , Peptides/pharmacology , Peptides/chemistry , Structure-Activity Relationship
3.
Cells ; 12(11)2023 05 25.
Article in English | MEDLINE | ID: mdl-37296595

ABSTRACT

Controversial reports have suggested that SARS-CoV E and 3a proteins are plasma membrane viroporins. Here, we aimed at better characterizing the cellular responses induced by these proteins. First, we show that expression of SARS-CoV-2 E or 3a protein in CHO cells gives rise to cells with newly acquired round shapes that detach from the Petri dish. This suggests that cell death is induced upon expression of E or 3a protein. We confirmed this by using flow cytometry. In adhering cells expressing E or 3a protein, the whole-cell currents were not different from those of the control, suggesting that E and 3a proteins are not plasma membrane viroporins. In contrast, recording the currents on detached cells uncovered outwardly rectifying currents much larger than those observed in the control. We illustrate for the first time that carbenoxolone and probenecid block these outwardly rectifying currents; thus, these currents are most probably conducted by pannexin channels that are activated by cell morphology changes and also potentially by cell death. The truncation of C-terminal PDZ binding motifs reduces the proportion of dying cells but does not prevent these outwardly rectifying currents. This suggests distinct pathways for the induction of these cellular events by the two proteins. We conclude that SARS-CoV-2 E and 3a proteins are not viroporins expressed at the plasma membrane.


Subject(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animals , Cricetulus , Cell Membrane , CHO Cells
5.
Front Physiol ; 14: 1132533, 2023.
Article in English | MEDLINE | ID: mdl-36860515

ABSTRACT

hERG, the pore-forming subunit of the rapid component of the delayed rectifier K+ current, plays a key role in ventricular repolarization. Mutations in the KCNH2 gene encoding hERG are associated with several cardiac rhythmic disorders, mainly the Long QT syndrome (LQTS) characterized by prolonged ventricular repolarization, leading to ventricular tachyarrhythmias, sometimes progressing to ventricular fibrillation and sudden death. Over the past few years, the emergence of next-generation sequencing has revealed an increasing number of genetic variants including KCNH2 variants. However, the potential pathogenicity of the majority of the variants remains unknown, thus classifying them as variants of uncertain significance or VUS. With diseases such as LQTS being associated with sudden death, identifying patients at risk by determining the variant pathogenicity, is crucial. The purpose of this review is to describe, on the basis of an exhaustive examination of the 1322 missense variants, the nature of the functional assays undertaken so far and their limitations. A detailed analysis of 38 hERG missense variants identified in Long QT French patients and studied in electrophysiology also underlies the incomplete characterization of the biophysical properties for each variant. These analyses lead to two conclusions: first, the function of many hERG variants has never been looked at and, second, the functional studies done so far are excessively heterogeneous regarding the stimulation protocols, cellular models, experimental temperatures, homozygous and/or the heterozygous condition under study, a context that may lead to conflicting conclusions. The state of the literature emphasizes how necessary and important it is to perform an exhaustive functional characterization of hERG variants and to standardize this effort for meaningful comparison among variants. The review ends with suggestions to create a unique homogeneous protocol that could be shared and adopted among scientists and that would facilitate cardiologists and geneticists in patient counseling and management.

6.
PLoS Negl Trop Dis ; 17(2): e0011069, 2023 02.
Article in English | MEDLINE | ID: mdl-36757916

ABSTRACT

Opportunistic scorpion species can colonize urban environments, establishing high-density communities that enhance the chances of human accidents. This scenario has been taking place in Brazil, in which some Tityus species have taken city centers, causing an explosion in the number of scorpion envenoming cases. The characteristics of this scorpionism epidemic in Brazil is discussed in the present work. The number of Brazilian scorpion stings has surpassed 120,000 cases in 2017, and has been maintained above this number ever since, representing a more than 3-fold increase in 10 years, which was higher than the number of cases for most of the neglected tropical diseases in the country. The escalation in scorpionism cases is even higher in some regions of Brazil. Fortunately, the proportion of mild cases has also increased in the analyzed period, as well as the number of victims seeking for medical attention within the first hour after the accident. The species Tityus serrulatus, Tityus stigmurus, Tityus bahiensis, and Tityus obscurus are traditionally accountable for most of the scorpion accidents in different regions of Brazil, but other species deserve to be closely watched. Despite scorpionism being a notable health problem in Brazil, accident prevention and pest control regarding this venomous animal have not been properly addressed by the scientific community nor by policy makers. Therefore, this review also aims to point possible fields of research that could help to contain the aggravation of the current scorpionism landscape in Brazil.


Subject(s)
Scorpion Stings , Scorpion Venoms , Animals , Humans , Scorpion Stings/epidemiology , Brazil/epidemiology , Scorpions
7.
Toxins (Basel) ; 14(2)2022 01 21.
Article in English | MEDLINE | ID: mdl-35202107

ABSTRACT

α-bungarotoxin is a large, 74 amino acid toxin containing five disulphide bridges, initially identified in the venom of Bungarus multicinctus snake. Like most large toxins, chemical synthesis of α-bungarotoxin is challenging, explaining why all previous reports use purified or recombinant α-bungarotoxin. However, only chemical synthesis allows easy insertion of non-natural amino acids or new chemical functionalities. Herein, we describe a procedure for the chemical synthesis of a fluorescent-tagged α-bungarotoxin. The full-length peptide was designed to include an alkyne function at the amino-terminus through the addition of a pentynoic acid linker. Chemical synthesis of α-bungarotoxin requires hydrazide-based coupling of three peptide fragments in successive steps. After completion of the oxidative folding, an azide-modified Cy5 fluorophore was coupled by click chemistry onto the toxin. Next, we determined the efficacy of the fluorescent-tagged α-bungarotoxin to block acetylcholine (ACh)-mediated currents in response to muscle nicotinic receptor activation in TE671 cells. Using automated patch-clamp recordings, we demonstrate that fluorescent synthetic α-bungarotoxin has the expected nanomolar affinity for the nicotinic receptor. The blocking effect of fluorescent α-bungarotoxin could be displaced by incubation with a 20-mer peptide mimicking the α-bungarotoxin binding site. In addition, TE671 cells could be labelled with fluorescent toxin, as witnessed by confocal microscopy, and this labelling was partially displaced by the 20-mer competitive peptide. We thus demonstrate that synthetic fluorescent-tagged α-bungarotoxin preserves excellent properties for binding onto muscle nicotinic receptors.


Subject(s)
Bungarotoxins/chemical synthesis , Bungarotoxins/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/pharmacology , Fluorescent Dyes/chemistry , Acetylcholine , Cell Line , Click Chemistry , High-Throughput Screening Assays , Humans , Models, Molecular , Protein Conformation
8.
Clin Transl Med ; 11(11): e609, 2021 11.
Article in English | MEDLINE | ID: mdl-34841674

ABSTRACT

BACKGROUND AND AIMS: Mutations in KCNH2 cause long or short QT syndromes (LQTS or SQTS) predisposing to life-threatening arrhythmias. Over 1000 hERG variants have been described by clinicians, but most remain to be characterised. The objective is to standardise and accelerate the phenotyping process to contribute to clinician diagnosis and patient counselling. In silico evaluation was also included to characterise the structural impact of the variants. METHODS: We selected 11 variants from known LQTS patients and two variants for which diagnosis was problematic. Using the Gibson assembly strategy, we efficiently introduced mutations in hERG cDNA despite GC-rich sequences. A pH-sensitive fluorescent tag was fused to hERG for efficient evaluation of channel trafficking. An optimised 35-s patch-clamp protocol was developed to evaluate hERG channel activity in transfected cells. R software was used to speed up analyses. RESULTS: In the present work, we observed a good correlation between cell surface expression, assessed by the pH-sensitive tag, and current densities. Also, we showed that the new biophysical protocol allows a significant gain of time in recording ion channel properties and provides extensive information on WT and variant channel biophysical parameters, that can all be recapitulated in a single parameter defined herein as the repolarisation power. The impacts of the variants on channel structure were also reported where structural information was available. These three readouts (trafficking, repolarisation power and structural impact) define three pathogenicity indexes that may help clinical diagnosis. CONCLUSIONS: Fast-track characterisation of KCNH2 genetic variants shows its relevance to discriminate mutants that affect hERG channel activity from variants with undetectable effects. It also helped the diagnosis of two new variants. This information is meant to fill a patient database, as a basis for personalised medicine. The next steps will be to further accelerate the process using an automated patch-clamp system.


Subject(s)
Arrhythmias, Cardiac/genetics , ERG1 Potassium Channel/genetics , Long QT Syndrome/genetics , Action Potentials/genetics , Humans , Transcriptional Regulator ERG/genetics , Virulence/drug effects
9.
Europace ; 23(3): 441-450, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33200177

ABSTRACT

AIMS: In 2003, an Australian woman was convicted by a jury of smothering and killing her four children over a 10-year period. Each child died suddenly and unexpectedly during a sleep period, at ages ranging from 19 days to 18 months. In 2019 we were asked to investigate if a genetic cause could explain the children's deaths as part of an inquiry into the mother's convictions. METHODS AND RESULTS: Whole genomes or exomes of the mother and her four children were sequenced. Functional analysis of a novel CALM2 variant was performed by measuring Ca2+-binding affinity, interaction with calcium channels and channel function. We found two children had a novel calmodulin variant (CALM2 G114R) that was inherited maternally. Three genes (CALM1-3) encode identical calmodulin proteins. A variant in the corresponding residue of CALM3 (G114W) was recently reported in a child who died suddenly at age 4 and a sibling who suffered a cardiac arrest at age 5. We show that CALM2 G114R impairs calmodulin's ability to bind calcium and regulate two pivotal calcium channels (CaV1.2 and RyR2) involved in cardiac excitation contraction coupling. The deleterious effects of G114R are similar to those produced by G114W and N98S, which are considered arrhythmogenic and cause sudden cardiac death in children. CONCLUSION: A novel functional calmodulin variant (G114R) predicted to cause idiopathic ventricular fibrillation, catecholaminergic polymorphic ventricular tachycardia, or mild long QT syndrome was present in two children. A fatal arrhythmic event may have been triggered by their intercurrent infections. Thus, calmodulinopathy emerges as a reasonable explanation for a natural cause of their deaths.


Subject(s)
Infanticide , Tachycardia, Ventricular , Arrhythmias, Cardiac , Australia , Child , Child, Preschool , Death, Sudden, Cardiac/etiology , Female , Humans , Infant , Ryanodine Receptor Calcium Release Channel , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/genetics
10.
Front Cell Dev Biol ; 9: 798588, 2021.
Article in English | MEDLINE | ID: mdl-34988086

ABSTRACT

Huwentoxin-IV (HwTx-IV), a peptide discovered in the venom of the Chinese bird spider Cyriopagopus schmidti, has been reported to be a potent antinociceptive compound due to its action on the genetically-validated NaV1.7 pain target. Using this peptide for antinociceptive applications in vivo suffers from one major drawback, namely its negative impact on the neuromuscular system. Although studied only recently, this effect appears to be due to an interaction between the peptide and the NaV1.6 channel subtype located at the presynaptic level. The aim of this work was to investigate how HwTx-IV could be modified in order to alter the original human (h) NaV1.7/NaV1.6 selectivity ratio of 23. Nineteen HwTx-IV analogues were chemically synthesized and tested for their blocking effects on the Na+ currents flowing through these two channel subtypes stably expressed in cell lines. Dose-response curves for these analogues were generated, thanks to the use of an automated patch-clamp system. Several key amino acid positions were targeted owing to the information provided by earlier structure-activity relationship (SAR) studies. Among the analogues tested, the potency of HwTx-IV E4K was significantly improved for hNaV1.6, leading to a decreased hNaV1.7/hNaV1.6 selectivity ratio (close to 1). Similar decreased selectivity ratios, but with increased potency for both subtypes, were observed for HwTx-IV analogues that combine a substitution at position 4 with a modification of amino acid 1 or 26 (HwTx-IV E1G/E4G and HwTx-IV E4K/R26Q). In contrast, increased selectivity ratios (>46) were obtained if the E4K mutation was combined to an additional double substitution (R 26A/Y33W) or simply by further substituting the C-terminal amidation of the peptide by a carboxylated motif, linked to a marked loss of potency on hNaV1.6 in this latter case. These results demonstrate that it is possible to significantly modulate the selectivity ratio for these two channel subtypes in order to improve the potency of a given analogue for hNaV1.6 and/or hNaV1.7 subtypes. In addition, selective analogues for hNaV1.7, possessing better safety profiles, were produced to limit neuromuscular impairments.

11.
Int J Biol Macromol ; 164: 1112-1123, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32702423

ABSTRACT

Loxoscelism is a recognized public health problem in Brazil, but the venom from Loxosceles similis, which is widespread in Brazil due to its adaptability to the urban environment, remains poorly characterized. Loxtox is a family of phospholipase D enzymes (PLDs), which are the major components of Loxosceles venom and are responsible for the clinical effects of loxoscelism. Loxtox toxins correspond to 15% of L. similis venom gland transcripts, but the Loxtox family of L. similis has yet to be fully described. In this study, we cloned and functionally characterized recLoxtox s1A and recLoxtox s11A. These recombinant toxins exhibited different in vitro activities depending on pH, and recLoxtox s1A had more intense effects on rabbit skin than did recLoxtox s11A in vivo. Both recombinant toxins were used in immunization protocols, and mapping of their epitopes revealed different immunological reactions for the produced immune serums. Additionally, polyclonal antibodies raised against recLoxtox s1A had greater capacity to significantly reduce the in vitro and in vivo effects of L. similis venom. In summary, we obtained and characterized two novel Loxtox isoforms from L. similis venom, which may be valuable biotechnological and immunological tools against loxoscelism.


Subject(s)
Phosphoric Diester Hydrolases/metabolism , Spider Venoms/metabolism , Spiders/metabolism , Animals , Cloning, Molecular , Epitopes/chemistry , Female , Hydrogen-Ion Concentration , Immune Sera/immunology , Neutralization Tests , Phospholipase D/metabolism , Phosphoric Diester Hydrolases/genetics , Protein Isoforms , Rabbits , Recombinant Proteins/metabolism , Skin/drug effects , Sphingomyelin Phosphodiesterase/metabolism , Spider Venoms/genetics
12.
Toxicon ; 173: 5-19, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31726080

ABSTRACT

Loxosceles spp. (Araneae, Sicariidae), known as brown spiders, are distributed in temperate and tropical regions worldwide. Accidents caused by these spiders are known as loxoscelism and constitute a public health problem, especially in Brazil. The present review describes the taxonomy, distribution, and ecological profile of brown spiders, as well as the molecular and biochemical aspects of Loxosceles venom. Additionally, it presents an overview on L. similis, a species found in the Southeastern region of Brazil. In this region, the number of Loxosceles accidents has been increasing in the past few years, thus calling attention to its raising importance as a medically relevant spider species in Brazil.


Subject(s)
Phosphoric Diester Hydrolases , Spider Venoms , Spiders , Animals , Brazil , Spider Bites
13.
Toxicon ; 167: 134-143, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31207348

ABSTRACT

Hyaluronidases (HYALs) are enzymes ubiquitously found in venoms from diverse animals and seem to be related to venom spreading. HYAL activity might be important to Tityus spp. envenoming, since anti-Tityus serrulatus HYAL (TsHYAL) rabbit antibodies neutralize T. serrulatus venom (TsV) lethality. The present work aimed to verify and compare HYAL activity of venoms from other Brazilian Tityus spp. (Tityus bahiensis, Tityus stigmurus and Tityus obscurus) and to test whether anti-TsHYAL antibodies and Brazilian horse therapeutic scorpion antivenom (produced by Fundação Ezequiel Dias (FUNED), Butantan and Vital Brazil Institutes) can recognize and inhibit HYAL activity from these venoms. In ELISA assays, anti-TsHYAL and scorpion antivenoms recognized T. serrulatus, T. bahiensis and T. stigmurus venoms, however, they demonstrated weaker reaction with T. obscurus, which was also observed in Western blotting assay. Epitope mapping by SPOT assay revealed different binding patterns for each antivenom. The assay showed a weaker binding of scorpion antivenom produced by FUNED to peptides recognized by anti-TsHYAL antibodies. Anti-TsHYAL antibodies and antivenoms produced by Butantan and Vital Brazil institutes inhibited HYAL activity of all tested venoms in vitro, whereas FUNED antivenom did not show the same property. These results call attention to the importance of hyaluronidase inhibition, that can aid the improvement of antivenom production.


Subject(s)
Antivenins/chemistry , Hyaluronoglucosaminidase/pharmacology , Scorpion Venoms/chemistry , Amino Acid Sequence , Animals , Binding Sites, Antibody , Brazil , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Hyaluronoglucosaminidase/antagonists & inhibitors , Immunoassay , Models, Molecular , Rabbits , Sequence Analysis, Protein
14.
PLoS One ; 14(4): e0214075, 2019.
Article in English | MEDLINE | ID: mdl-30943232

ABSTRACT

Annually, more than 1.2 million scorpion stings and more than 3,000 deaths occur worldwide. Tityus serrulatus Lutz and Mello, 1922 (Scorpiones, Buthidae) is the most medically relevant species in Brazil where it is spreading rapidly and causing over 90,000 cases of envenomation yearly. We monitored T. serrulatus longevity and ability to reproduce under conditions of food and/or water deprivation. We found that T. serrulatus is highly tolerant to food deprivation, with individuals enduring up to 400 days without food. On the other hand, access to water played a pivotal role in T. serrulatus survival. Food and water deprived scorpions showed weight reduction. Reproduction occurred throughout the year for food-deprived scorpions and controls, but not in the water-deprived groups. Remarkably, food-deprived animals were able to give birth after 209 days of starvation. Tityus serrulatus resistance to food and water deprivation is likely to be an additional factor underlying this species' geographic expansion and the difficulties encountered in controlling it.


Subject(s)
Food Deprivation/physiology , Reproduction/physiology , Scorpions/physiology , Water Deprivation/physiology , Animals , Brazil , Scorpion Stings , Scorpion Venoms
15.
PLoS Negl Trop Dis ; 13(4): e0007048, 2019 04.
Article in English | MEDLINE | ID: mdl-31002673

ABSTRACT

BACKGROUND: The hyaluronidase enzyme is generally known as a spreading factor in animal venoms. Although its activity has been demonstrated in several organisms, a deeper knowledge about hyaluronidase and the venom spreading process from the bite/sting site until its elimination from the victim's body is still in need. Herein, we further pursued the goal of demonstrating the effects of inhibition of T. serrulatus venom (TsV) hyaluronidase on venom biodistribution. METHODS AND PRINCIPAL FINDINGS: We used technetium-99m radiolabeled Tityus serrulatus venom (99mTc-TsV) to evaluate the venom distribution kinetics in mice. To understand the hyaluronidase's role in the venom's biodistribution, 99mTc-TsV was immunoneutralized with specific anti-T.serrulatus hyaluronidase serum. Venom biodistribution was monitored by scintigraphic images of treated animals and by measuring radioactivity levels in tissues as heart, liver, lungs, spleen, thyroid, and kidneys. In general, results revealed that hyaluronidase inhibition delays venom components distribution, when compared to the non-neutralized 99mTc-TsV control group. Scintigraphic images showed that the majority of the immunoneutralized venom is retained at the injection site, whereas non-treated venom is quickly biodistributed throughout the animal's body. At the first 30 min, concentration peaks are observed in the heart, liver, lungs, spleen, and thyroid, which gradually decreases over time. On the other hand, immunoneutralized 99mTc-TsV takes 240 min to reach high concentrations in the organs. A higher concentration of immunoneutralized 99mTc-TsV was observed in the kidneys in comparison with the non-treated venom. Further, in situ neutralization of 99mTc-TsV by anti-T.serrulatus hyaluronidase serum at zero, ten, and 30 min post venom injection showed that late inhibition of hyaluronidase can still affect venom biodistribution. In this assay, immunoneutralized 99mTc-TsV was accumulated in the bloodstream until 120 or 240 min after TsV injection, depending on anti-hyaluronidase administration time. Altogether, our data show that immunoneutralization of hyaluronidase prevents venom spreading from the injection site. CONCLUSIONS: By comparing TsV biodistribution in the absence or presence of anti-hyaluronidase serum, the results obtained in the present work show that hyaluronidase has a key role not only in the venom spreading from the inoculation point to the bloodstream, but also in venom biodistribution from the bloodstream to target organs. Our findings demonstrate that hyaluronidase is indeed an important spreading factor of TsV and its inhibition can be used as a novel first-aid strategy in envenoming.


Subject(s)
Antivenins/pharmacology , Hyaluronoglucosaminidase/antagonists & inhibitors , Kidney/metabolism , Scorpion Venoms/pharmacokinetics , Scorpions , Animals , Antibodies/blood , Female , Mice , Organ Specificity , Radionuclide Imaging , Technetium , Tissue Distribution
16.
Sci Rep ; 8(1): 14739, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30282983

ABSTRACT

Scorpion sting envenoming impacts millions of people worldwide, with cardiac effects being one of the main causes of death on victims. Here we describe the first Ca2+ channel toxin present in Tityus serrulatus (Ts) venom, a cell penetrating peptide (CPP) named CPP-Ts. We show that CPP-Ts increases intracellular Ca2+ release through the activation of nuclear InsP3R of cardiomyocytes, thereby causing an increase in the contraction frequency of these cells. Besides proposing a novel subfamily of Ca2+ active toxins, we investigated its potential use as a drug delivery system targeting cancer cell nucleus using CPP-Ts's nuclear-targeting property. To this end, we prepared a synthetic CPP-Ts sub peptide14-39 lacking pharmacological activity which was directed to the nucleus of specific cancer cell lines. This research identifies a novel subfamily of Ca2+ active toxins and provides new insights into biotechnological applications of animal venoms.


Subject(s)
Calcium/chemistry , Cell-Penetrating Peptides/chemistry , Drug Delivery Systems , Neoplasms/drug therapy , Amino Acid Sequence/genetics , Animals , Calcium Channels , Cell Line, Tumor , Cell-Penetrating Peptides/genetics , Cell-Penetrating Peptides/pharmacology , Cell-Penetrating Peptides/therapeutic use , Cytoplasm/drug effects , Humans , Scorpion Venoms/chemistry , Scorpions/chemistry
17.
Anaerobe ; 49: 48-52, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29246841

ABSTRACT

Clostridium perfringens alpha toxin, encoded by plc gene, has been implicated in gas gangrene, a life threatening infection. Vaccination is considered one of the best solutions against Clostridium infections. Although studies have identified many low quality clostridial vaccines, the use of recombinant proteins has been considered a promising alternative. Previously, a naturally occurring alpha toxin isoform (αAV1b) was identified with a mutation at residue 11 (His/Tyr), which can affect its enzymatic activity. The aim of the present study was to evaluate whether the mutation in the αAV1b isoform could result in an inactive toxin and was able to induce protection against the native alpha toxin. We used recombinant protein techniques to determine whether this mutation in αAV1b could result in an inactive toxin compared to the active isoform, αZ23. Rabbits were immunized with the recombinant toxins (αAV1b and αZ23) and with native alpha toxin. αAV1b showed no enzymatic and hemolytic activities. ELISA titration assays showed a high titer of both anti-recombinant toxin (anti-rec-αAV1b and anti-rec-αZ23) antibodies against the native alpha toxin. The alpha antitoxin titer detected in the rabbits' serum pool was 24.0 IU/mL for both recombinant toxins. These results demonstrate that the inactive naturally mutated αAV1b is able to induce an immune response, and suggest it can be considered as a target for the development of a commercial vaccine against C. perfringens alpha toxin.


Subject(s)
Antibodies, Bacterial/immunology , Antibodies, Neutralizing/immunology , Bacterial Toxins/immunology , Calcium-Binding Proteins/immunology , Clostridium Infections/immunology , Clostridium perfringens/immunology , Type C Phospholipases/immunology , Animals , Bacterial Toxins/genetics , Bacterial Vaccines/genetics , Bacterial Vaccines/immunology , Calcium-Binding Proteins/genetics , Clostridium Infections/microbiology , Clostridium perfringens/genetics , Female , Humans , Immunization , Mice , Rabbits , Type C Phospholipases/genetics
18.
Mitochondrial DNA B Resour ; 2(2): 417-418, 2017 Jul 14.
Article in English | MEDLINE | ID: mdl-33473846

ABSTRACT

Sporophila maximiliani, commonly known as Great-billed Seed-Finch or 'bicudo', is a trafficked bird in Brazil due to the species' beauty and singing, which is appreciated by breeders and collectors. Generally, the Environmental Military Police and IBAMA maintain enforcement actions, rescue work, and seizure of illegally traded of 'bicudo' specimens. The genomic DNA of one specimen was sequenced on MiSeq (Illumina) sequencer. The reads obtained were analyzed, trimmed, and de novo assembled using CLC Workbench® v9.0 (CLC Bio-Qiagen). The mitochondrial genome of S. maximiliani consisted of 16,765 base pairs, 2 ribosomal RNA, 22 transporter RNA, 13 protein-coding genes, and 1 control region. The molecular phylogeny demonstrated that the mitochondrial genome of S. maximiliani diverged from others related Passeriformes.

19.
Toxicon ; 120: 97-106, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27496061

ABSTRACT

Envenoming resulting from Loxosceles spider bites (loxoscelism) is a recognized public health problem in Brazil. However, the pathophysiology of loxoscelism caused by L. similis bites, which is widespread in Brazil, remains poorly understood. In the present work, the RNA sequencing (RNA-Seq - Next Generation sequencing - NGS) of the L. similis venom gland was performed to identify and analyze the sequences of the key component phospholipase D. The sequences were aligned based on their classical domains, and a phylogenetic tree was constructed. In the bioinformatics analysis, 23 complete sequences of phospholipase D proteins were found and classified as Loxtox proteins, as they contained the characteristic domains of phospholipase D: the active site, the Mg(2+)-binding domain, and the catalytic loop. Three phospholipase D sequences with non-canonical domains were also found in this work. They were analyzed separately and named PLDs from L. similis (PLD-Ls). This study is the first to characterize phospholipase D sequences from Loxosceles spiders by RNA-Seq. These results contribute new knowledge about the composition of L. similis venom, revealing novel tools that could be used for pharmacological, immunological, and biotechnological applications.


Subject(s)
Brown Recluse Spider , Insect Proteins/metabolism , Phospholipase D/metabolism , Spider Venoms/enzymology , Amino Acid Sequence , Animals , High-Throughput Nucleotide Sequencing , Insect Proteins/genetics , Phospholipase D/genetics , Phosphoric Diester Hydrolases/genetics , Phylogeny , Sequence Homology, Amino Acid , Spider Venoms/genetics
20.
Curr Med Chem ; 23(6): 603-22, 2016.
Article in English | MEDLINE | ID: mdl-26812904

ABSTRACT

Animal venoms are a mixture of bioactive compounds produced as weapons and used primarily to immobilize and kill preys. As a result of the high potency and specificity for various physiological targets, many toxins from animal venoms have emerged as possible drugs for the medication of diverse disorders, including cardiovascular diseases. Captopril, which inhibits the angiotensin-converting enzyme (ACE), was the first successful venom-based drug and a notable example of rational drug design. Since captopril was developed, many studies have discovered novel bradykinin-potentiating peptides (BPPs) with actions on the cardiovascular system. Natriuretic peptides (NPs) have also been found in animal venoms and used as template to design new drugs with applications in cardiovascular diseases. Among the anti-arrhythmic peptides, GsMTx-4 was discovered to be a toxin that selectively inhibits the stretch-activated cation channels (SACs), which are involved in atrial fibrillation. The present review describes the main components isolated from animal venoms that act on the cardiovascular system and presents a brief summary of venomous animals and their venom apparatuses.


Subject(s)
Cardiovascular Agents/chemistry , Cardiovascular Agents/therapeutic use , Cardiovascular Diseases/drug therapy , Cardiovascular System/drug effects , Drug Discovery , Venoms/chemistry , Venoms/therapeutic use , Amino Acid Sequence , Animals , Bradykinin/metabolism , Cardiovascular Agents/pharmacology , Cardiovascular Diseases/physiopathology , Cardiovascular System/physiopathology , Drug Discovery/methods , Humans , Molecular Sequence Data , Peptides/chemistry , Peptides/pharmacology , Peptides/therapeutic use , Renin-Angiotensin System/drug effects , Venoms/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...