Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters










Publication year range
1.
J Histochem Cytochem ; 71(4): 227-228, 2023 04.
Article in English | MEDLINE | ID: mdl-37016585
2.
J Cell Sci ; 134(9)2021 05 01.
Article in English | MEDLINE | ID: mdl-34550354

ABSTRACT

Although RACK1 is known to act as a signaling hub in immune cells, its presence and role in mast cells (MCs) is undetermined. MC activation via antigen stimulation results in mediator release and is preceded by cytoskeleton reorganization and Ca2+ mobilization. In this study, we found that RACK1 was distributed throughout the MC cytoplasm both in vivo and in vitro. After RACK1 knockdown (KD), MCs were rounded, and the cortical F-actin was fragmented. Following antigen stimulation, in RACK1 KD MCs, there was a reduction in cortical F-actin, an increase in monomeric G-actin and a failure to organize F-actin. RACK1 KD also increased and accelerated degranulation. CD63+ secretory granules were localized in F-actin-free cortical regions in non-stimulated RACK1 KD MCs. Additionally, RACK1 KD increased antigen-stimulated Ca2+ mobilization, but attenuated antigen-stimulated depletion of ER Ca2+ stores and thapsigargin-induced Ca2+ entry. Following MC activation there was also an increase in interaction of RACK1 with Orai1 Ca2+-channels, ß-actin and the actin-binding proteins vinculin and MyoVa. These results show that RACK1 is a critical regulator of actin dynamics, affecting mediator secretion and Ca2+ signaling in MCs. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Actins , Calcium , Actin Cytoskeleton , Actins/genetics , Humans , Mast Cells , Neoplasm Proteins/genetics , Receptors for Activated C Kinase/genetics , Thapsigargin
3.
Transl Oncol ; 14(1): 100970, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33260070

ABSTRACT

BACKGROUND: Oral squamous cell carcinoma (OSCC) remains a challenging cancer to treat despite all the advances of the last 50 years. Kallikrein 5 (KLK5) is among the serine proteases implicated in OSCC development. However, whether the activity of KLK5 promotes carcinogenesis is still controversial. Moreover, knowledge regarding the role of the KLK5 cognate inhibitor, Lympho-Epithelial Kazal-Type related Inhibitor (LEKTI), in OSCC is scarce. We have, thus, sought to investigate the importance of KLK5 and LEKTI expression in premalignant and malignant lesions of the oral cavity. METHODS: KLK5 and LEKTI protein expression was evaluated in 301 human samples, which were comprised of non-malignant and malignant lesions of the oral cavity. Moreover, a bioinformatic analysis of the overall survival rate from 517 head and neck squamous cell carcinoma (HNSCC) samples was performed. Additionally, to mimic the uncovered KLK5 to serine peptidase inhibitor (SPINK5) imbalance, the KLK5 gene was abrogated in an OSCC cell line using CRISPR-Cas9 technology. The generated cell line was then used for in vivo and in vitro carcinogenesis related experiments. RESULTS: LEKTI was found to be statistically downregulated in OSCCs, with increased KLK5/SPINK5 mRNA ratio being associated with a shorter overall survival (p = 0.091). Indeed, disruption of KLK5 to SPINK5 balance through the generation of KLK5 null OSCC cells led to smaller xenografted tumors and statistically decreased proliferation rates following multiple time points of BrdU treatment in vitro. CONCLUSION: The association of increased enzyme/inhibitor ratio with poor prognosis indicates KLK5 to SPINK5 relative expression as an important prognostic marker in OSCC.

4.
PLoS One ; 15(3): e0230633, 2020.
Article in English | MEDLINE | ID: mdl-32208440

ABSTRACT

Mast cells are connective tissue resident cells with morphological and functional characteristics that contribute to their role in allergic and inflammatory processes, host defense and maintenance of tissue homeostasis. Mast cell activation results in the release of pro-inflammatory mediators which are largely responsible for the physiological functions of mast cells. The lectin ArtinM, extracted from Artocarpus heterophyllus (jackfruit), binds to D-manose, thus inducing degranulation of mast cells. ArtinM has several immunomodulatory properties including acceleration of wound healing, and induction of cytokine release. The aim of the present study was to investigate the role of ArtinM in the activation and proliferation of mast cells. The rat mast cell line RBL-2H3 was used throughout this study. At a low concentration (0.25µg/mL), ArtinM induced mast cell activation and the release of IL-6 without stimulating the release of pre-formed or newly formed mediators. Additionally, when the cells were activated by ArtinM protein tyrosine phosphorylation was stimulated. The low concentration of ArtinM also activated the transcription factor NFkB, but not NFAT. ArtinM also affected the cell cycle and stimulated cell proliferation. Therefore, ArtinM may have therapeutic applications by modulating immune responses due to its ability to activate mast cells and promote the release of newly synthesized mediators. Additionally, ArtinM could have beneficial effects at low concentrations without degranulating mast cells and inducing allergic reactions.


Subject(s)
Cell Degranulation/drug effects , Lectins/pharmacology , Plant Proteins/pharmacology , Animals , Artocarpus/metabolism , Cell Line , Cell Membrane/drug effects , Cell Membrane/ultrastructure , Cell Proliferation/drug effects , Interleukin-6/metabolism , Mast Cells/cytology , Mast Cells/metabolism , Mitosis/drug effects , NF-kappa B/metabolism , Phosphorylation/drug effects , Rats
5.
Int J Mol Sci ; 20(16)2019 Aug 11.
Article in English | MEDLINE | ID: mdl-31405203

ABSTRACT

Lipid rafts are highly ordered membrane microdomains enriched in cholesterol, glycosphingolipids, and certain proteins. They are involved in the regulation of cellular processes in diverse cell types, including mast cells (MCs). The MC lipid raft protein composition was assessed using qualitative mass spectrometric characterization of the proteome from detergent-resistant membrane fractions from RBL-2H3 MCs. Using two different post-isolation treatment methods, a total of 949 lipid raft associated proteins were identified. The majority of these MC lipid raft proteins had already been described in the RaftProtV2 database and are among highest cited/experimentally validated lipid raft proteins. Additionally, more than half of the identified proteins had lipid modifications and/or transmembrane domains. Classification of identified proteins into functional categories showed that the proteins were associated with cellular membrane compartments, and with some biological and molecular functions, such as regulation, localization, binding, catalytic activity, and response to stimulus. Furthermore, functional enrichment analysis demonstrated an intimate involvement of identified proteins with various aspects of MC biological processes, especially those related to regulated secretion, organization/stabilization of macromolecules complexes, and signal transduction. This study represents the first comprehensive proteomic profile of MC lipid rafts and provides additional information to elucidate immunoregulatory functions coordinated by raft proteins in MCs.


Subject(s)
Mast Cells/chemistry , Membrane Microdomains/chemistry , Membrane Proteins/analysis , Animals , Cell Line , Chromatography, High Pressure Liquid , Mass Spectrometry , Proteomics , Rats
6.
Cells ; 8(4)2019 04 12.
Article in English | MEDLINE | ID: mdl-31013764

ABSTRACT

Previous studies from our laboratory have shown that during angiogenesis in vitro, rmMCP-7 (recombinant mouse mast cell protease-7) stimulates endothelial cell spreading and induces their penetration into the matrix. The ability of rmMCP-7 to induce angiogenesis in vivo was assessed in the present study using a directed in vivo angiogenesis assay (DIVAA™). Vessel invasion of the angioreactor was observed in the presence of rmMCP-7 but was not seen in the control. Since integrins are involved in endothelial cell migration, the relationship between rmMCP-7 and integrins during angiogenesis was investigated. Incubation with rmMCP-7 resulted in a reduction in the levels of integrin subunits αv and ß1 on SVEC4-10 endothelial cells during angiogenesis in vitro. Furthermore, the degradation of integrin subunits occurs both through the direct action of rmMCP-7 and indirectly via the ubiquitin/proteasome system. Even in the presence of a proteasome inhibitor, incubation of endothelial cells with rmMCP-7 induced cell migration and tube formation as well as the beginning of loop formation. These data indicate that the direct degradation of the integrin subunits by rmMCP-7 is sufficient to initiate angiogenesis. The results demonstrate, for the first time, that mMCP-7 acts in angiogenesis through integrin degradation.


Subject(s)
Endothelial Cells/metabolism , Neovascularization, Physiologic/physiology , Tryptases/metabolism , Angiogenesis Inducing Agents/pharmacology , Animals , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Movement/drug effects , Cells, Cultured , Endothelial Cells/cytology , Endothelial Cells/drug effects , Integrins/metabolism , Male , Mice , Mice, Nude , Morphogenesis/drug effects , Neovascularization, Physiologic/drug effects , Tryptases/pharmacology
7.
PLoS Pathog ; 14(5): e1007047, 2018 05.
Article in English | MEDLINE | ID: mdl-29723305

ABSTRACT

Peribunyaviridae is a large family of RNA viruses with several members that cause mild to severe diseases in humans and livestock. Despite their importance in public heath very little is known about the host cell factors hijacked by these viruses to support assembly and cell egress. Here we show that assembly of Oropouche virus, a member of the genus Orthobunyavirus that causes a frequent arboviral infection in South America countries, involves budding of virus particles toward the lumen of Golgi cisternae. As viral replication progresses, these Golgi subcompartments become enlarged and physically separated from Golgi stacks, forming Oropouche viral factory (Vfs) units. At the ultrastructural level, these virally modified Golgi cisternae acquire an MVB appearance, and while they lack typical early and late endosome markers, they become enriched in endosomal complex required for transport (ESCRT) proteins that are involved in MVB biogenesis. Further microscopy and viral replication analysis showed that functional ESCRT machinery is required for efficient Vf morphogenesis and production of infectious OROV particles. Taken together, our results indicate that OROV attracts ESCRT machinery components to Golgi cisternae to mediate membrane remodeling events required for viral assembly and budding at these compartments. This represents an unprecedented mechanism of how viruses hijack host cell components for coordinated morphogenesis.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Orthobunyavirus/metabolism , Orthobunyavirus/physiology , Cell Culture Techniques , Endosomal Sorting Complexes Required for Transport/physiology , Endosomes/metabolism , Golgi Apparatus/metabolism , Golgi Apparatus/virology , HeLa Cells , Humans , Orthobunyavirus/growth & development , Orthobunyavirus/pathogenicity , Virion/metabolism , Virus Assembly/physiology , Virus Release/physiology , Virus Replication/physiology
8.
Int J Mol Sci ; 18(12)2017 Dec 13.
Article in English | MEDLINE | ID: mdl-29236033

ABSTRACT

Angiogenesis is a complex process that involves interactions between endothelial cells and various other cell types as well as the tissue microenvironment. Several previous studies have demonstrated that mast cells accumulate at angiogenic sites. In spite of the evidence suggesting a relationship between mast cells and angiogenesis, the association of mast cells and endothelial cells remains poorly understood. The present study aims to investigate the relationship between mast cells and endothelial cells during in vitro angiogenesis. When endothelial cells were co-cultured with mast cells, angiogenesis was stimulated. Furthermore, there was direct intercellular communication via gap junctions between the two cell types. In addition, the presence of mast cells stimulated endothelial cells to release angiogenic factors. Moreover, conditioned medium from the co-cultures also stimulated in vitro angiogenesis. The results from this investigation demonstrate that mast cells have both direct and indirect proangiogenic effects and provide new insights into the role of mast cells in angiogenesis.


Subject(s)
Cell Communication/physiology , Neovascularization, Physiologic/physiology , Angiogenesis Inducing Agents/metabolism , Animals , Cell Line , Cell Movement , Coculture Techniques , Connexin 43/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Gap Junctions/metabolism , Mast Cells/cytology , Mast Cells/metabolism , Mice , Microscopy, Electron
9.
J Histochem Cytochem ; 65(12): 723-741, 2017 12.
Article in English | MEDLINE | ID: mdl-28980852

ABSTRACT

Mast cells are multifunctional immune cells that participate in many important processes such as defense against pathogens, allergic reactions, and tissue repair. These cells perform their functions through the release of a wide variety of mediators. This release occurs mainly through cross-linking IgE (immunoglobulin E) bound to high affinity IgE receptors by multivalent antigens. The abundance of mast cells in connective tissue, surrounding blood vessels, and their involvement in the early stages of bone repair support the possibility of physiological and pathological interactions between mast cells and osteoblasts. However, the participation of mast cell mediators in osteogenesis is not fully understood. Therefore, the objective of this work was to investigate the role of mast cell mediators in the acquisition of the osteogenic phenotype in vitro. The results show that pooled mast cell mediators can affect proliferation, morphology, and cytoskeleton of osteoblastic cells, and impair the activity and expression of alkaline phosphatase as well as the expression of bone sialoprotein. Also, mast cell mediators inhibit the expression of mRNA for those proteins and inhibit the formation and maturation of calcium nodules and consequently inhibit mineralization. Therefore, mast cell mediators can modulate osteogenesis and are potential therapeutic targets for treatments of bone disorders.


Subject(s)
Cell Differentiation/drug effects , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Mast Cells/cytology , Mast Cells/drug effects , Minerals/metabolism , Osteoblasts/cytology , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Alkaline Phosphatase/genetics , Animals , Cell Line , Cell Proliferation/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Integrin-Binding Sialoprotein/genetics , Integrin-Binding Sialoprotein/metabolism , Mast Cells/metabolism , Osteoblasts/drug effects , Osteopontin/genetics , Protein Transport/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats
10.
PLoS One ; 12(8): e0184010, 2017.
Article in English | MEDLINE | ID: mdl-28846733

ABSTRACT

Paracoccidioides brasiliensis yeast was reported to express paracoccin, a GlcNAc-binding protein that displays N-acetyl-ß-d-glucosaminidase (NAGase) activity. Highly specific anti-paracoccin antibodies have been previously used to examine the localization of paracoccin in yeast and inhibit its growth in vitro. In the present study, anti-paracoccin antibodies were used to characterize, by scanning confocal microscopy, the distribution of paracoccin in P. brasiliensis hyphae, transition forms from hyphae to yeast, and mature yeast. In the mycelial phase, paracoccin was detected mainly in the hyphae tips, where it demonstrated a punctate distribution, and was associated with the cell wall. During the first 48 hours after a temperature shift from 26°C to 37°C, paracoccin expression in the differentiating hyphae was mainly detected in the budding regions, i.e. lateral protrusions, and inside the new daughter cells. There was an increased number of chlamydoconidia that expressed a high concentration of paracoccin on their surfaces and/or in their interiors 72-96 hours after the temperature shift. After 120 hours, yeast cells were the predominant form and their cytoplasm stained extensively for paracoccin, whereas Wheat Germ Agglutinin (WGA) staining was predominant on their exterior walls. After 10 days at 37°C, the interior of both mother and daughter yeast cells, as well as the budding regions, stained intensely for paracoccin. The comparison of mRNA-expression in the different fungal forms showed that PCN transcripts, although detected in all evaluated morphological forms, were higher in hypha and yeast-to-hypha transition forms. In conclusion, the pattern of paracoccin distribution in all P. brasiliensis morphotypes supports prevalent beliefs that it plays important roles in fungal growth and dimorphic transformation.


Subject(s)
Fungal Proteins/metabolism , Paracoccidioides/metabolism , Paracoccidioides/growth & development , Wheat Germ Agglutinins/metabolism
11.
J Biomed Mater Res A ; 105(8): 2150-2161, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28371254

ABSTRACT

Titanium is a biomaterial widely used in dental and orthopedic implants. Since tissue-implant interactions occur at the nanoscale level, nanotextured titanium surfaces may affect cellular activity and modulate the tissue response that occurs at the tissue-implant interface. Therefore, the characterization of diverse cell types in response to titanium surfaces with nanotopography is important for the rational design of implants. Mast cells are multifunctional cells of the immune system that release a range of chemical mediators involved in the inflammatory response that occurs at the tissue-implant interface. Therefore, the aim of this study was to investigate the effects of the nanotopography of titanium surfaces on the physiology of mast cells. The results show that the nanotopography of titanium surfaces promoted the spreading of mast cells, which was accompanied by the reorganization of the cytoskeleton. Also, the nanotopography of titanium surfaces enhanced cell migration and cell growth, but did not alter the number of adherent cells in first hours of culture or affect focal adhesions and mediator release. Thus, the results show that nanotopography of titanium surfaces can affect mast cell physiology, and represents an improved strategy for the rational production of surfaces that stimulate tissue integration with the titanium implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2150-2161, 2017.


Subject(s)
Biocompatible Materials/chemistry , Mast Cells/cytology , Nanostructures/chemistry , Titanium/chemistry , Animals , Cell Adhesion , Cell Line , Cell Movement , Cell Proliferation , Rats , Surface Properties
12.
PLoS One ; 12(3): e0173462, 2017.
Article in English | MEDLINE | ID: mdl-28273137

ABSTRACT

Mast cell (MC) secretory granules are Lysosome-Related Organelles (LROs) whose biogenesis is associated with the post-Golgi secretory and endocytic pathways in which the sorting of proteins destined for a specific organelle relies on the recognition of sorting signals by adaptor proteins that direct their incorporation into transport vesicles. The adaptor protein 3 (AP-3) complex mediates protein trafficking between the trans-Golgi network (TGN) and late endosomes, lysosomes, and LROs. AP-3 has a recognized role in LROs biogenesis and regulated secretion in several cell types, including many immune cells such as neutrophils, natural killer cells, and cytotoxic T lymphocytes. However, the relevance of AP-3 for these processes in MCs has not been previously investigated. AP-3 was found to be expressed and distributed in a punctate fashion in rat peritoneal mast cells ex vivo. The rat MC line RBL-2H3 was used as a model system to investigate the role of AP-3 in mast cell secretory granule biogenesis and mediator release. By immunofluorescence and immunoelectron microscopy, AP-3 was localized both to the TGN and early endosomes indicating that AP-3 dependent sorting of proteins to MC secretory granules originates in these organelles. ShRNA mediated depletion of the AP-3 δ subunit was shown to destabilize the AP-3 complex in RBL-2H3 MCs. AP-3 knockdown significantly affected MC regulated secretion of ß-hexosaminidase without affecting total cellular enzyme levels. Morphometric evaluation of MC secretory granules by electron microscopy revealed that the area of MC secretory granules in AP-3 knockdown MCs was significantly increased, indicating that AP-3 is involved in MC secretory granule biogenesis. Furthermore, AP-3 knockdown had a selective impact on the secretion of newly formed and newly synthesized mediators. These results show for the first time that AP-3 plays a critical role in secretory granule biogenesis and mediator release in MCs.


Subject(s)
Adaptor Protein Complex 3/metabolism , Cell Degranulation , Mast Cells/metabolism , Adaptor Protein Complex 3/genetics , Animals , Biomarkers , Cell Degranulation/genetics , Cell Line , Cytokines/metabolism , Endocytosis , Female , Gene Expression , Gene Knockdown Techniques , Inflammation Mediators/metabolism , Male , Mast Cells/immunology , Protein Stability , Protein Transport , RNA, Small Interfering/genetics , Rats , Receptors, IgE/genetics , Receptors, IgE/metabolism
13.
Mediators Inflamm ; 2016: 9160540, 2016.
Article in English | MEDLINE | ID: mdl-27578923

ABSTRACT

Mast cells are immunoregulatory cells that participate in inflammatory processes. Cross-linking mast cell specific GD1b derived gangliosides by mAbAA4 results in partial activation of mast cells without the release of preformed mediators. The present study examines the release of newly formed and newly synthesized mediators following ganglioside cross-linking. Cross-linking the gangliosides with mAbAA4 released the newly formed lipid mediators, prostaglandins D2 and E2, without release of leukotrienes B4 and C4. The effect of cross-linking these gangliosides on the activation of enzymes in the arachidonate cascade was then investigated. Ganglioside cross-linking resulted in phosphorylation of cytosolic phospholipase A2 and increased expression of cyclooxygenase-2. Translocation of 5-lipoxygenase from the cytosol to the nucleus was not induced by ganglioside cross-linking. Cross-linking of GD1b derived gangliosides also resulted in the release of the newly synthesized mediators, interleukin-4, interleukin-6, and TNF-α. The effect of cross-linking the gangliosides on the MAP kinase pathway was then investigated. Cross-linking the gangliosides induced the phosphorylation of ERK1/2, JNK1/2, and p38 as well as activating both NFκB and NFAT in a Syk-dependent manner. Therefore, cross-linking the mast cell specific GD1b derived gangliosides results in the activation of signaling pathways that culminate with the release of newly formed and newly synthesized mediators.


Subject(s)
Cytokines/metabolism , Gangliosides/metabolism , Mast Cells/metabolism , Animals , Cell Line , Group IV Phospholipases A2/metabolism , Immunoblotting , Interleukin-4/metabolism , Interleukin-6/metabolism , Leukotrienes/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 8/metabolism , Mitogen-Activated Protein Kinase 9/metabolism , NF-kappa B/metabolism , NFATC Transcription Factors/metabolism , Phosphorylation , Prostaglandins D/metabolism , Prostaglandins E/metabolism , Rats , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
14.
BMC Immunol ; 17(1): 22, 2016 07 04.
Article in English | MEDLINE | ID: mdl-27377926

ABSTRACT

BACKGROUND: Mast cells are hematopoietically derived cells that play a role in inflammatory processes such as allergy, as well as in the immune response against pathogens by the selective and rapid release of preformed and lipid mediators, and the delayed release of cytokines. The native homotetrameric lectin ArtinM, a D-mannose binding lectin purified from Artocarpus heterophyllus seeds, is one of several lectins that are able to activate mast cells. Besides activating mast cells, ArtinM has been shown to affect several biological responses, including immunomodulation and acceleration of wound healing. Because of the potential pharmacological application of ArtinM, a recombinant ArtinM (rArtinM) was produced in Escherichia coli. The current study evaluated the ability of rArtinM to induce mast cell degranulation and activation. RESULTS: The glycan binding specificity of rArtinM was similar to that of jArtinM. rArtinM, via its CRD, was able to degranulate, releasing ß-hexosaminidase and TNF-α, and to promote morphological changes on the mast cell surface. Moreover, rArtinM induced the release of the newly-synthesized mediator, IL-4. rArtinM does not have a co-stimulatory effect on the FcεRI degranulation via. The IgE-dependent mast cell activation triggered by rArtinM seems to be dependent on NFkB activation. CONCLUSIONS: The lectin rArtinM has the ability to activate and degranulate mast cells via their CRDs. The present study indicates that rArtinM is a suitable substitute for the native form, jArtinM, and that rArtinM may serve as an important and reliable pharmacological agent.


Subject(s)
Mast Cells/immunology , Plant Lectins/immunology , Recombinant Proteins/immunology , Animals , Artocarpus/immunology , Cell Degranulation , Cell Line , Cloning, Molecular , Escherichia coli/genetics , Histamine/metabolism , Immunoglobulin E/metabolism , Immunomodulation , Interleukin-4/metabolism , Mannose/metabolism , NF-kappa B/metabolism , Plant Lectins/isolation & purification , Protein Binding , Rats , Recombinant Proteins/isolation & purification , beta-N-Acetylhexosaminidases/metabolism
15.
PLoS One ; 10(12): e0144081, 2015.
Article in English | MEDLINE | ID: mdl-26633538

ABSTRACT

Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7) in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization.


Subject(s)
Angiogenic Proteins/metabolism , Endothelial Cells/drug effects , Endothelium, Vascular/drug effects , Neovascularization, Pathologic/metabolism , Tryptases/pharmacology , Angiogenesis Inducing Agents/pharmacology , Animals , Cell Line , Cells, Cultured , Chick Embryo , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Male , Mast Cells/cytology , Mast Cells/drug effects , Mast Cells/metabolism , Mice
16.
PLoS One ; 10(10): e0139888, 2015.
Article in English | MEDLINE | ID: mdl-26492088

ABSTRACT

Phospholipase D (PLD) hydrolyses phosphatidylcholine to produce phosphatidic acid (PA) and choline. It has two isoforms, PLD1 and PLD2, which are differentially expressed depending on the cell type. In mast cells it plays an important role in signal transduction. The aim of the present study was to clarify the role of PLD2 in the secretory pathway. RBL-2H3 cells, a mast cell line, transfected to overexpress catalytically active (PLD2CA) and inactive (PLD2CI) forms of PLD2 were used. Previous observations showed that the Golgi complex was well organized in CA cells, but was disorganized and dispersed in CI cells. Furthermore, in CI cells, the microtubule organizing center was difficult to identify and the microtubules were disorganized. These previous observations demonstrated that PLD2 is important for maintaining the morphology and organization of the Golgi complex. To further understand the role of PLD2 in secretory and vesicular trafficking, the role of PLD2 in the secretory process was investigated. Incorporation of sialic acid was used to follow the synthesis and transport of glycoconjugates in the cell lines. The modified sialic acid was subsequently detected by labeling with a fluorophore or biotin to visualize the localization of the molecule after a pulse-chase for various times. Glycoconjugate trafficking was slower in the CI cells and labeled glycans took longer to reach the plasma membrane. Furthermore, in CI cells sialic acid glycans remained at the plasma membrane for longer periods of time compared to RBL-2H3 cells. These results suggest that PLD2 activity plays an important role in regulating glycoconjugate trafficking in mast cells.


Subject(s)
Mast Cells/enzymology , Mast Cells/metabolism , Phospholipase D/metabolism , Animals , Biological Transport/physiology , Cell Line , N-Acetylneuraminic Acid/metabolism , Rats , Secretory Pathway/physiology
17.
PLoS Negl Trop Dis ; 9(8): e0004032, 2015.
Article in English | MEDLINE | ID: mdl-26317855

ABSTRACT

BACKGROUND: The fungus Paracoccidioides brasiliensis is the leading etiological agent of paracoccidioidomycosis (PCM), a systemic granulomatous disease that typically affects the lungs. Cell wall components of P. brasiliensis interact with host cells and influence the pathogenesis of PCM. In yeast, many glycosylphosphatidylinositol (GPI)-anchored proteins are important in the initial contact with the host, mediating host-yeast interactions that culminate with the disease. PbPga1 is a GPI anchored protein located on the surface of the yeast P. brasiliensis that is recognized by sera from PCM patients. METHODOLOGY/PRINCIPAL FINDINGS: Endogenous PbPga1 was localized to the surface of P. brasiliensis yeast cells in the lungs of infected mice using a polyclonal anti-rPbPga1 antibody. Furthermore, macrophages stained with anti-CD38 were associated with P. brasiliensis containing granulomas. Additionally, rPbPga1 activated the transcription factor NFkB in the macrophage cell line Raw 264.7 Luc cells, containing the luciferase gene downstream of the NFkB promoter. After 24 h of incubation with rPbPga1, alveolar macrophages from BALB/c mice were stimulated to release TNF-α, IL-4 and NO. Mast cells, identified by toluidine blue staining, were also associated with P. brasiliensis containing granulomas. Co-culture of P. Brasiliensis yeast cells with RBL-2H3 mast cells induced morphological changes on the surface of the mast cells. Furthermore, RBL-2H3 mast cells were degranulated by P. brasiliensis yeast cells, but not by rPbPga1, as determined by the release of beta-hexosaminidase. However, RBL-2H3 cells activated by rPbPga1 released the inflammatory interleukin IL-6 and also activated the transcription factor NFkB in GFP-reporter mast cells. The transcription factor NFAT was not activated when the mast cells were incubated with rPbPga1. CONCLUSIONS/SIGNIFICANCE: The results indicate that PbPga1 may act as a modulator protein in PCM pathogenesis and serve as a useful target for additional studies on the pathogenesis of P. brasiliensis.


Subject(s)
Fungal Proteins/immunology , Macrophages/immunology , Mast Cells/immunology , NF-kappa B/immunology , Paracoccidioides/immunology , Paracoccidioidomycosis/immunology , Animals , Fungal Proteins/genetics , Humans , Interleukin-6/genetics , Interleukin-6/immunology , Male , Mice , Mice, Inbred BALB C , NF-kappa B/genetics , Paracoccidioides/genetics , Paracoccidioidomycosis/genetics , Paracoccidioidomycosis/microbiology
18.
Eur J Immunol ; 45(10): 2873-85, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26234742

ABSTRACT

Quantitative alterations in mast cell numbers in pancreatic lymph nodes (PLNs) have been reported to be associated with type 1 diabetes (T1D) progression, but their potential role during T1D remains unclear. In this study, we evaluated the role of mast cells in T1D induced by multiple low-dose streptozotocin (MLD-STZ) treatments, using two strains of mast cell-deficient mice (W/W(v) or Wsh/Wsh) and the adoptive transfer of mast cells. Mast cell deficient mice developed severe insulitis and accelerated hyperglycemia, with 100% of mice becoming diabetic compared to their littermates. In parallel, these diabetic mice had decreased numbers of T regulatory (Treg) cells in the PLNs. Additionally, mast cell deficiency caused a significant reduction in IL-10, TGF-ß, and IL-6 expression in the pancreatic tissue. Interestingly, IL-6-deficient mice are more susceptible to T1D associated with reduced Treg-cell numbers in the PLNs, but mast cell transfer from wild-type mice induced protection to T1D in these mice. Finally, mast cell adoptive transfer prior to MLD-STZ administration conferred resistance to T1D, promoted increased Treg cells, and decreased IL-17-producing T cells in the PLNs. Taken together, our results indicate that mast cells are implicated in resistance to STZ-induced T1D via an immunological tolerance mechanism mediated by Treg cells.


Subject(s)
Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Type 1/immunology , Gene Expression Regulation/immunology , Mast Cells/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Cytokines/genetics , Cytokines/immunology , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/pathology , Mast Cells/pathology , Mice , Mice, Knockout , T-Lymphocytes, Regulatory/pathology , Th17 Cells/immunology , Th17 Cells/pathology
19.
Biomed Res Int ; 2015: 142359, 2015.
Article in English | MEDLINE | ID: mdl-26146612

ABSTRACT

An association between mast cells and tumor angiogenesis is known to exist, but the exact role that mast cells play in this process is still unclear. It is thought that the mediators released by mast cells are important in neovascularization. However, it is not known how individual mediators are involved in this process. The major constituents of mast cell secretory granules are the mast cell specific proteases chymase, tryptase, and carboxypeptidase A3. Several previous studies aimed to understand the way in which specific mast cell granule constituents act to induce tumor angiogenesis. A body of evidence indicates that mast cell proteases are the pivotal players in inducing tumor angiogenesis. In this review, the likely mechanisms by which tryptase and chymase can act directly or indirectly to induce tumor angiogenesis are discussed. Finally, information presented here in this review indicates that mast cell proteases significantly influence angiogenesis thus affecting tumor growth and progression. This also suggests that these proteases could serve as novel therapeutic targets for the treatment of various types of cancer.


Subject(s)
Chymases/metabolism , Neoplasms/enzymology , Neovascularization, Pathologic/enzymology , Tryptases/metabolism , Chymases/genetics , Humans , Mast Cells/enzymology , Mast Cells/metabolism , Mast Cells/pathology , Molecular Targeted Therapy , Neoplasms/pathology , Neoplasms/therapy , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/therapy , Tryptases/genetics
20.
PLoS One ; 9(11): e113691, 2014.
Article in English | MEDLINE | ID: mdl-25423108

ABSTRACT

Nef is an HIV-1 accessory protein that promotes viral replication and pathogenesis. A key function of Nef is to ensure sustained depletion of CD4 and MHC-I molecules in infected cells by inducing targeting of these proteins to multivesicular bodies (MVBs), and ultimately to lysosomes for degradation. Nef also affects cellular secretory routes promoting its own secretion via exosomes. To better understand the effects of Nef on the exocytic pathway, we investigated whether this viral factor modifies the composition of exosomes released by T lymphocytes. We showed that both CD4 and MHC-I molecules are secreted in exosomes from T cells and that the expression of Nef reduces the amount of these proteins in exosomes. To investigate the functional role for this novel activity of Nef, we performed in vitro HIV-1 infection assays in the presence of distinct populations of exosomes. We demonstrated that exosomes released by CD4+ T cells, but not CD4- T cells, efficiently inhibit HIV-1 infection in vitro. Because CD4 is the main receptor for HIV-1 infection, these results suggest that CD4 molecules displayed on the surface of exosomes can bind to envelope proteins of HIV-1 hindering virus interaction with target cells and infection. Importantly, CD4-depleted exosomes released by CD4+ T cells expressing Nef have a reduced capacity to inhibit HIV-1 infection in vitro. These results provide evidence that Nef promotes HIV-1 infection by reducing the expression of CD4 in exosomes from infected cells, besides the original role of Nef in reducing the CD4 levels at the cell surface.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Exosomes/immunology , Gene Products, nef/immunology , HIV Infections/immunology , Cell Line , Down-Regulation , HEK293 Cells , HIV-1 , Humans , Major Histocompatibility Complex/immunology , Microscopy, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...