Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
J Fish Dis ; 47(6): e13913, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38421380

ABSTRACT

Piscirickettsiosis is the main cause of mortality in salmonids of commercial importance in Chile, which is caused by Piscirickettsia salmonis, a Gram-negative, γ-proteobacteria that can produce biofilm as one of its virulence factors. The Chilean salmon industry uses large amounts of antibiotics to control piscirickettsiosis outbreaks, which has raised concern about its environmental impact and the potential to induce antibiotic resistance. Thus, the use of phytogenic feed additives (PFA) with antibacterial activity emerges as an interesting alternative to antimicrobials. Our study describes the antimicrobial action of an Andrographis paniculate-extracted PFA on P. salmonis planktonic growth and biofilm formation. We observed complete inhibition of planktonic and biofilm growth with 500 and 400 µg/mL of PFA for P. salmonis LF-89 and EM-90-like strains, respectively. Furthermore, 500 µg/mL of PFA was bactericidal for both evaluated bacterial strains. Sub-inhibitory doses of PFA increase the transcript levels of stress (groEL), biofilm (pslD), and efflux pump (acrB) genes for both P. salmonis strains in planktonic and sessile conditions. In conclusion, our results demonstrate the antibacterial effect of PFA against P. salmonis in vitro, highlighting the potential of PFA as an alternative to control Piscirickettsiosis.


Subject(s)
Animal Feed , Biofilms , Fish Diseases , Piscirickettsia , Piscirickettsiaceae Infections , Biofilms/drug effects , Biofilms/growth & development , Piscirickettsia/drug effects , Piscirickettsia/physiology , Fish Diseases/microbiology , Piscirickettsiaceae Infections/veterinary , Piscirickettsiaceae Infections/microbiology , Animals , Animal Feed/analysis , Anti-Bacterial Agents/pharmacology , Dietary Supplements/analysis , Plant Extracts/pharmacology , Diet/veterinary , Chile
2.
J Fish Dis ; 47(1): e13862, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37776076

ABSTRACT

Piscirickettsiosis is the most prevalent bacterial disease affecting seawater salmon in Chilean salmon industry. Antibiotic therapy is the first alternative to counteract infections caused by Piscirickettsia salmonis. The presence of bacterial biofilms on materials commonly used in salmon farming may be critical for understanding the bacterial persistence in the environment. In the present study, the CDC Biofilm Reactor® was used to investigate the effect of sub- and over-MIC of florfenicol on both the pre-formed biofilm and the biofilm formation by P. salmonis under the antibiotic stimuli on Nylon and high-density polyethylene (HDPE) surfaces. This study demonstrated that FLO, at sub- and over-MIC doses, decreases biofilm-embedded live bacteria in the P. salmonis isolates evaluated. However, it was shown that in the P. salmonis Ps007 strain the presence of sub-MIC of FLO reduced its biofilm formation on HDPE surfaces; however, biofilm persists on Nylon surfaces. These results demonstrated that P. salmonis isolates behave differently against FLO and also, depending on the surface materials. Therefore, it remains a challenge to find an effective strategy to control the biofilm formation of P. salmonis, and certainly other marine pathogens that affect the sustainability of the Chilean salmon industry.


Subject(s)
Fish Diseases , Piscirickettsia , Piscirickettsiaceae Infections , Salmonidae , Animals , Polyethylene/pharmacology , Nylons/pharmacology , Fish Diseases/drug therapy , Fish Diseases/prevention & control , Fish Diseases/microbiology , Anti-Bacterial Agents/pharmacology , Salmon , Biofilms , Piscirickettsiaceae Infections/veterinary , Piscirickettsiaceae Infections/microbiology
3.
Front Immunol ; 14: 1187209, 2023.
Article in English | MEDLINE | ID: mdl-37187753

ABSTRACT

Nutritional immunity regulates the homeostasis of micronutrients such as iron, manganese, and zinc at the systemic and cellular levels, preventing the invading microorganisms from gaining access and thereby limiting their growth. Therefore, the objective of this study was to evaluate the activation of nutritional immunity in specimens of Atlantic salmon (Salmo salar) that are intraperitoneally stimulated with both live and inactivated Piscirickettsia salmonis. The study used liver tissue and blood/plasma samples on days 3, 7, and 14 post-injections (dpi) for the analysis. Genetic material (DNA) of P. salmonis was detected in the liver tissue of fish stimulated with both live and inactivated P. salmonis at 14 dpi. Additionally, the hematocrit percentage decreased at 3 and 7 dpi in fish stimulated with live P. salmonis, unchanged in fish challenged with inactivated P. salmonis. On the other hand, plasma iron content decreased during the experimental course in fish stimulated with both live and inactivated P. salmonis, although this decrease was statistically significant only at 3 dpi. Regarding the immune-nutritional markers such as tfr1, dmt1, and ireg1 were modulated in the two experimental conditions, compared to zip8, ft-h, and hamp, which were down-regulated in fish stimulated with live and inactivated P. salmonis during the course experimental. Finally, the intracellular iron content in the liver increased at 7 and 14 dpi in fish stimulated with live and inactivated P. salmonis, while the zinc content decreased at 14 dpi under both experimental conditions. However, stimulation with live and inactivated P. salmonis did not alter the manganese content in the fish. The results suggest that nutritional immunity does not distinguish between live and inactivated P. salmonis and elicits a similar immune response. Probably, this immune mechanism would be self-activated with the detection of PAMPs, instead of a sequestration and/or competition of micronutrients by the living microorganism.


Subject(s)
Piscirickettsia , Salmo salar , Animals , Manganese , Piscirickettsia/genetics , Iron
4.
J Fish Dis ; 46(5): 591-596, 2023 May.
Article in English | MEDLINE | ID: mdl-36639965

ABSTRACT

Public health is facing a new challenge due to the increased bacterial resistance to most of the conventional antibacterial agents. Inadequate use of antibiotics in the Chilean aquaculture industry leads to the generation of multidrug resistance bacteria. Many fish pathogenic bacteria produce biofilm upon various sources of stress such as antibiotics, which provides several survival advantages for the bacterial life in community and can constitute a reservoir of pathogens in the marine environment. Being florfenicol a broad-spectrum antibiotic commonly used to treat infections in aquaculture, the aim of this study was to assess whether this antibiotic modulates in vitro the biofilm formation in several isolates of Piscirickettsia salmonis. Standard antibiotic-micro broth 96-flat well plates were used to determinate the minimal inhibitory concentration of florfenicol in eight different P. salmonis isolates. In vitro findings, with P. salmonis growing in the presence and absence of the antibiotic, exhibited a statistically significantly increase (p < .05) in biofilm formation in all the bacterial isolates cultivated with sub-MIC (defined as the half of the minimal inhibitory concentration in the presence of antibiotic) of florfenicol compared with controls (antibiotic-free broth). In conclusion, sub-MIC of florfenicol induced an increased biofilm formation in all P. salmonis isolates tested.


Subject(s)
Fish Diseases , Piscirickettsia , Piscirickettsiaceae Infections , Thiamphenicol , Animals , Fish Diseases/microbiology , Thiamphenicol/pharmacology , Anti-Bacterial Agents/pharmacology , Biofilms , Piscirickettsiaceae Infections/microbiology
5.
Front Immunol ; 13: 849752, 2022.
Article in English | MEDLINE | ID: mdl-35493529

ABSTRACT

The innate immune system can limit the growth of invading pathogens by depleting micronutrients at a cellular and tissue level. However, it is not known whether nutrient depletion mechanisms discriminate between living pathogens (which require nutrients) and pathogen-associated molecular patterns (PAMPs) (which do not). We stimulated SHK-1 cells with different PAMPs (outer membrane vesicles of Piscirickettsia salmonis "OMVs", protein extract of P. salmonis "TP" and lipopolysaccharides of P. salmonis "LPS") isolated from P. salmonis and evaluated transcriptional changes in nutritional immunity associated genes. Our experimental treatments were: Control (SHK-1 stimulated with bacterial culture medium), OMVs (SHK-1 stimulated with 1µg of outer membrane vesicles), TP (SHK-1 stimulated with 1µg of total protein extract) and LPS (SHK-1 stimulated with 1µg of lipopolysaccharides). Cells were sampled at 15-, 30-, 60- and 120-minutes post-stimulation. We detected increased transcription of zip8, zip14, irp1, irp2 and tfr1 in all three experimental conditions and increased transcription of dmt1 in cells stimulated with OMVs and TP, but not LPS. Additionally, we observed generally increased transcription of ireg-1, il-6, hamp, irp1, ft-h and ft-m in all three experimental conditions, but we also detected decreased transcription of these markers in cells stimulated with TP and LPS at specific time points. Our results demonstrate that SHK-1 cells stimulated with P. salmonis PAMPs increase transcription of markers involved in the transport, uptake, storage and regulation of micronutrients such as iron, manganese and zinc.


Subject(s)
Pathogen-Associated Molecular Pattern Molecules , Salmon , Animals , Cell Line , Lipopolysaccharides/pharmacology , Macrophages , Micronutrients , Piscirickettsia
6.
J Fish Dis ; 45(8): 1099-1107, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35543448

ABSTRACT

Research into Piscirickettsia salmonis biofilms on materials commonly used in salmon farming is crucial for understanding its persistence and virulence. We used the CDC Biofilm Reactor to investigate P. salmonis (LF-89 and EM-90) biofilm formation on Nylon, Stainless steel (316L), Polycarbonate and High-Density Polyethylene (HDPE) surfaces. After 144 h of biofilm visualization by scanning confocal laser microscopy under batch growth conditions, Nylon coupons generated the greatest biofilm formation and coverage compared to Stainless steel (316L), Polycarbonate and HDPE. Additionally, P. salmonis biofilm formation on Nylon was significantly greater (p ≤ .01) than Stainless steel (316L), Polycarbonate and HDPE at 288 h. We used Nylon coupons to determine the kinetic parameters of the planktonic and biofilm phases of P. salmonis. The two strains had similar latencies in the planktonic phase; however, LF-89 maximum growth was 2.5 orders of magnitude higher (Log cell ml-1 ). Additionally, LF-89 had a specified growth rate (µmax) of 0.0177 ± 0.006 h-1 and a generation time of 39.2 h. This study contributes to a deeper understanding of the biofilm formation by P. salmonis and elucidates the impact of the biofilm on aquaculture systems.


Subject(s)
Fish Diseases , Piscirickettsia , Piscirickettsiaceae Infections , Animals , Biofilms , Centers for Disease Control and Prevention, U.S. , Fish Diseases/microbiology , Nylons , Piscirickettsiaceae Infections/microbiology , Polyethylene , Stainless Steel , United States
7.
Front Cell Infect Microbiol ; 11: 755496, 2021.
Article in English | MEDLINE | ID: mdl-34760722

ABSTRACT

Piscirickettsia salmonis is the etiological agent of piscirickettsiosis, the most prevalent disease in salmonid species in Chilean salmonids farms. Many bacteria produce N-acyl-homoserine lactones (AHLs) as a quorum-sensing signal molecule to regulate gene expression in a cell density-dependent manner, and thus modulate physiological characteristics and several bacterial mechanisms. In this study, a fluorescent biosensor system method and gas chromatography-tandem mass spectrometry (GC/MS) were combined to detect AHLs produced by P. salmonis. These analyses revealed an emitted fluorescence signal when the biosensor P. putida EL106 (RPL4cep) was co-cultured with both, P. salmonis LF-89 type strain and an EM-90-like strain Ps007, respectively. Furthermore, the production of an AHL-type molecule was confirmed by GC/MS by both P. salmonis strains, which identified the presence of a N-acetyl-L-homoserine Lactone in the supernatant extract. However, It is suggested that an alternate pathway could synthesizes AHLs, which should be address in future experiments in order to elucidate this important bacterial process. To the best of our knowledge, the present report is the first to describe the type of AHLs produced by P. salmonis.


Subject(s)
4-Butyrolactone , Quorum Sensing , 4-Butyrolactone/analogs & derivatives , Acyl-Butyrolactones , Bacteria , Gas Chromatography-Mass Spectrometry , Piscirickettsia
8.
Front Immunol ; 12: 602689, 2021.
Article in English | MEDLINE | ID: mdl-33679740

ABSTRACT

An effective and economical vaccine against the Piscirickettsia salmonis pathogen is needed for sustainable salmon farming and to reduce disease-related economic losses. Consequently, the aquaculture industry urgently needs to investigate efficient prophylactic measures. Three protein-based vaccine prototypes against Piscirickettsia salmonis were prepared from a highly pathogenic Chilean isolate. Only one vaccine effectively protected Atlantic salmon (Salmo salar), in correlation with the induction of Piscirickettsia-specific IgM antibodies and a high induction of transcripts encoding pro-inflammatory cytokines (i.e., Il-1ß and TNF-α). In addition, we studied the proteome fraction protein of P. salmonis strain Austral-005 using multidimensional protein identification technology. The analyzes identified 87 proteins of different subcellular origins, such as the cytoplasmic and membrane compartment, where many of them have virulence functions. The other two prototypes activated only the innate immune responses, but did not protect Salmo salar against P. salmonis. These results suggest that the knowledge of the formulation of vaccines based on P. salmonis proteins is useful as an effective therapy, this demonstrates the importance of the different research tools to improve the study of the different immune responses, resistance to diseases in the Atlantic salmon. We suggest that this vaccine can help prevent widespread infection by P. salmonis, in addition to being able to be used as a booster after a primary vaccine to maintain high levels of circulating protective antibodies, greatly helping to reduce the economic losses caused by the pathogen.


Subject(s)
Bacterial Proteins/immunology , Bacterial Vaccines/immunology , Fish Diseases , Piscirickettsia/immunology , Piscirickettsiaceae Infections , Salmo salar , Animals , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Diseases/prevention & control , Piscirickettsiaceae Infections/immunology , Piscirickettsiaceae Infections/microbiology , Piscirickettsiaceae Infections/prevention & control , Piscirickettsiaceae Infections/veterinary , Salmo salar/immunology , Salmo salar/microbiology
9.
Microorganisms ; 8(10)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33092013

ABSTRACT

Piscirickettsia salmonis is the causative agent of Piscirickettsiosis, an infectious disease with a high economic impact on the Chilean salmonid aquaculture industry. This bacterium produces biofilm as a potential resistance and persistence strategy against stressful environmental stimuli. However, the in vitro culture conditions that modulate biofilm formation as well as the effect of sessile bacteria on virulence and immune gene expression in host cells have not been described for P. salmonis. Therefore, this study aimed to analyze the biofilm formation by P. salmonis isolates under several NaCl and iron concentrations and to evaluate the virulence of planktonic and sessile bacteria, together with the immune gene expression induced by these bacterial conditions in an Atlantic salmon macrophage cell line. Our results showed that NaCl and Fe significantly increased biofilm production in the LF-89 type strain and EM-90-like isolates. Additionally, the planktonic EM-90 isolate and sessile LF-89 generated the highest virulence levels, associated with differential expression of il-1ß, il-8, nf-κb, and iκb-α genes in SHK-1 cells. These results suggest that there is no single virulence pattern or gene expression profile induced by the planktonic or sessile condition of P. salmonis, which are dependent on each strain and bacterial condition used.

10.
Microorganisms ; 8(1)2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31952216

ABSTRACT

Piscirickettsia salmonis is the causative bacterial agent of piscirickettsiosis, a systemic fish disease that significantly impacts the Chilean salmon industry. This bacterium possesses a type IV secretion system (T4SS), several proteins of the type III secretion system (T3SS), and a single heat shock protein 60 (Hsp60/GroEL). It has been suggested that due to its high antigenicity, the P. salmonis Hsp60 could be surface-exposed, translocated across the membrane, and (or) secreted into the extracellular matrix. This study tests the hypothesis that P. salmonis Hsp60 could be located on the bacterial surface. Immunogold electron microscopy and proteomic analyses suggested that although P. salmonis Hsp60 was predominantly associated with the bacterial cell cytoplasm, Hsp60-positive spots also exist on the bacterial cell envelope. IgY antibodies against P. salmonis Hsp60 protected SHK-1 cells against infection. Several bioinformatics approaches were used to assess Hsp60 translocation by the T4SS, T3SS, and T6SS, with negative results. These data support the hypothesis that small amounts of Hsp60 must reach the bacterial cell surface in a manner probably not mediated by currently characterized secretion systems, and that they remain biologically active during P. salmonis infection, possibly mediating adherence and (or) invasion.

11.
FEMS Microbiol Lett ; 365(16)2018 08 01.
Article in English | MEDLINE | ID: mdl-29986002

ABSTRACT

Piscirickettsia salmonis is an intracellular γ-proteobacteria and the etiological agent of piscirickettsiosis, which causes massive economic losses in the Chilean salmon industry. The type IV pili (T4P) play an important role in adherence to host cell surfaces and bacterial pathogenicity. T4P contains a variable number of components, as predicted in P. salmonis genomes. However, no studies have determined if P. salmonis possesses T4P. The aims of this investigation were to identify T4P components in the P. salmonis type strain LF-89T, evaluate respective transcript expressions, and analyze the main putative T4P proteins using bioinformatics and proteomic approaches. Two main clusters of P. salmonis T4P genes were found. Expression of the pilA gene was upregulated at 4 h post-infection (hpi), while pilQ was upregulated 4 days post-infection. At 16 hpi, pilB and pilD were strongly upregulated. The PilA amino acid sequence analysis showed a conserved N-terminal domain and sequence motifs critical for T4P biosynthesis. MudPIT analysis revealed PilA in the P. salmonis LF-89T proteome, and TEM showed pili-like filamentous structures on the P. salmonis surface. These results strongly suggest the presence of a T4P-like structure in P. salmonis.


Subject(s)
Fimbriae, Bacterial/metabolism , Fish Diseases/microbiology , Piscirickettsia/metabolism , Piscirickettsiaceae Infections/veterinary , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fimbriae, Bacterial/chemistry , Fimbriae, Bacterial/genetics , Genomics , Piscirickettsia/chemistry , Piscirickettsia/genetics , Piscirickettsia/growth & development , Piscirickettsiaceae Infections/microbiology , Proteomics , Salmo salar/microbiology , Sequence Alignment
12.
Article in English | MEDLINE | ID: mdl-29164068

ABSTRACT

Piscirickettsia salmonis is the etiological agent of salmonid rickettsial septicemia, a disease that seriously affects the salmonid industry. Despite efforts to genomically characterize P. salmonis, functional information on the life cycle, pathogenesis mechanisms, diagnosis, treatment, and control of this fish pathogen remain lacking. To address this knowledge gap, the present study conducted an in silico pan-genome analysis of 19 P. salmonis strains from distinct geographic locations and genogroups. Results revealed an expected open pan-genome of 3,463 genes and a core-genome of 1,732 genes. Two marked genogroups were identified, as confirmed by phylogenetic and phylogenomic relationships to the LF-89 and EM-90 reference strains, as well as by assessments of genomic structures. Different structural configurations were found for the six identified copies of the ribosomal operon in the P. salmonis genome, indicating translocation throughout the genetic material. Chromosomal divergences in genomic localization and quantity of genetic cassettes were also found for the Dot/Icm type IVB secretion system. To determine divergences between core-genomes, additional pan-genome descriptions were compiled for the so-termed LF and EM genogroups. Open pan-genomes composed of 2,924 and 2,778 genes and core-genomes composed of 2,170 and 2,228 genes were respectively found for the LF and EM genogroups. The core-genomes were functionally annotated using the Gene Ontology, KEGG, and Virulence Factor databases, revealing the presence of several shared groups of genes related to basic function of intracellular survival and bacterial pathogenesis. Additionally, the specific pan-genomes for the LF and EM genogroups were defined, resulting in the identification of 148 and 273 exclusive proteins, respectively. Notably, specific virulence factors linked to adherence, colonization, invasion factors, and endotoxins were established. The obtained data suggest that these genes could be directly associated with inter-genogroup differences in pathogenesis and host-pathogen interactions, information that could be useful in designing novel strategies for diagnosing and controlling P. salmonis infection.


Subject(s)
Genes, Bacterial/genetics , Genome, Bacterial/genetics , Genotype , Piscirickettsia/genetics , Animals , Bacterial Proteins/genetics , Fish Diseases/microbiology , Fishes/microbiology , Gene Ontology , Genome Size , Host-Pathogen Interactions , Kinetics , Metabolic Networks and Pathways/genetics , Operon , Phylogeny , Piscirickettsia/growth & development , Piscirickettsia/isolation & purification , Piscirickettsia/pathogenicity , Piscirickettsiaceae Infections/microbiology , Piscirickettsiaceae Infections/veterinary , Virulence Factors/genetics , Whole Genome Sequencing
13.
Article in English | MEDLINE | ID: mdl-29034215

ABSTRACT

Piscirickettsia salmonis is the predominant bacterial pathogen affecting the Chilean salmonid industry. This bacterium is the etiological agent of piscirickettsiosis, a significant fish disease. Membrane vesicles (MVs) released by P. salmonis deliver several virulence factors to host cells. To improve on existing knowledge for the pathogenicity-associated functions of P. salmonis MVs, we studied the proteome of purified MVs from the P. salmonis LF-89 type strain using multidimensional protein identification technology. Initially, the cytotoxicity of different MV concentration purified from P. salmonis LF-89 was confirmed in an in vivo adult zebrafish infection model. The cumulative mortality of zebrafish injected with MVs showed a dose-dependent pattern. Analyses identified 452 proteins of different subcellular origins; most of them were associated with the cytoplasmic compartment and were mainly related to key functions for pathogen survival. Interestingly, previously unidentified putative virulence-related proteins were identified in P. salmonis MVs, such as outer membrane porin F and hemolysin. Additionally, five amino acid sequences corresponding to the Bordetella pertussis toxin subunit 1 and two amino acid sequences corresponding to the heat-labile enterotoxin alpha chain of Escherichia coli were located in the P. salmonis MV proteome. Curiously, these putative toxins were located in a plasmid region of P. salmonis LF-89. Based on the identified proteins, we propose that the protein composition of P. salmonis LF-89 MVs could reflect total protein characteristics of this P. salmonis type strain.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Cytoplasmic Vesicles/metabolism , Piscirickettsia/metabolism , Proteome , Amino Acid Sequence , Animals , Bacterial Outer Membrane Proteins/metabolism , Bacterial Toxins/isolation & purification , Enterotoxins , Escherichia coli Proteins , Fish Diseases/metabolism , Hemolysin Proteins , Piscirickettsia/pathogenicity , Plasmids , Porins , Proteomics/methods , Virulence Factors/metabolism , Zebrafish
14.
Microb Pathog ; 110: 586-593, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28789875

ABSTRACT

Piscirickettsia salmonis is an intracellular bacterium and the causative agent of Piscirickettsiosis, a disease responsible for considerable mortalities in the Chilean salmon farming industry. Currently, P. salmonis protein translocation across the membrane and the mechanisms by which virulence factors are delivered to host cells are poorly understood. However, it is known that Gram-negative bacteria possess several mechanisms that transport proteins to the periplasmic and extracellular compartments. The aim of this study was to evaluate the expressional changes of several genes in the P. salmonis Sec-dependent pathway and type 4B secretion system during in vitro infection. Genes homologous and the main proteins belonging to Sec-dependent pathway and Type 4 Dot/Icm secretion system were found in the genome and proteome of P. salmonis AUSTRAL-005 strain. Additionally, several genes of these protein transport mechanisms were overexpressed during in vitro P. salmonis infection in SHK-1 cell line. The obtained data indicate that the Sec-dependent pathway and Type 4B secretion system are biologically active during P. salmonis infection. These mechanisms could contribute to the recycling of proteins into the inner and outer bacterial membrane and in translocate virulence factors to infected cell, which would favor the structural integrity and virulence of this bacterium.


Subject(s)
Gene Expression Profiling , Piscirickettsia/growth & development , Piscirickettsia/genetics , Type IV Secretion Systems/biosynthesis , Type IV Secretion Systems/genetics , Animals , Cell Line , Epithelial Cells/microbiology , Genomics , Proteomics , Salmon
15.
Microb Pathog ; 107: 436-441, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28438636

ABSTRACT

Piscirickettsia salmonis is the etiological agent of piscirickettsiosis, which, as the main systemic disease in the Chilean salmon industry, causes significant economic losses. This bacterium can produce biofilm as a persistence and survival strategy in adverse conditions. In other bacteria, cheA is a key gene for modulating the onset of bacterial chemotaxis, as well as having a secondary role in biofilm production. Notwithstanding this association, the potential relationships between biofilm formation and genes involved in P. salmonis chemotaxis are poorly understood. This study aimed to determine P. salmonis cheA gene expression when grown in different culture media known to induce biofilm production. Piscirickettsia salmonis AUSTRAL-005 produced moderate/high biofilm levels after 144 h of incubation in the AUSTRAL-SRS and marine broths. In contrast, LF-89 biofilm production was weak/nonexistent in the aforementioned broths. Both assessed P. salmonis strains contained the cheYZA operon. Additionally, AUSTRAL-005 cheA transcripts increased in both culture media. In conclusion, these results suggest potential relationships between biofilm formation and genes related to chemotaxis in the fish pathogen P. salmonis.


Subject(s)
Chemotaxis/genetics , Gene Expression Regulation, Bacterial/genetics , Operon/genetics , Piscirickettsia/genetics , Animals , Biofilms/growth & development , Cell Line , Chemotaxis/physiology , Culture Media/chemistry , Fish Diseases/microbiology , Fishes/microbiology , Genes, Bacterial/genetics , Methyl-Accepting Chemotaxis Proteins/genetics , Methyl-Accepting Chemotaxis Proteins/physiology , Microscopy, Electron, Scanning , Piscirickettsia/growth & development , Piscirickettsia/pathogenicity , Piscirickettsiaceae Infections/microbiology , Virulence/genetics , Virulence/physiology
16.
FEMS Microbiol Lett ; 363(11)2016 06.
Article in English | MEDLINE | ID: mdl-27190287

ABSTRACT

Piscirickettsia salmonis is a fastidious intracellular pathogen responsible for high mortality rates in farmed salmonids, with serious economic consequences for the Chilean aquaculture industry. Oxytetracycline and florfenicol are the most frequently used antibiotics against P. salmonis, but routine use could contribute to drug resistance. This study identified differentiated florfenicol susceptibilities in two P. salmonis strains, LF-89 and AUSTRAL-005. The less susceptible isolate, AUSTRAL-005, also showed a high ethidium bromide efflux rate, indicating a higher activity of general efflux pump genes than LF-89. The P. salmonis genome presented resistance nodulation division (RND) family members, a family containing typical multidrug resistance-related efflux pumps in Gram-negative bacteria. Additionally, efflux pump acrAB genes were overexpressed in AUSTRAL-005 following exposure to the tolerated maximal concentration of florfenicol, in contrast to LF-89. These results indicate that tolerated maximum concentrations of florfenicol can modulate RND gene expression and increase efflux pump activity. We propose that the acrAB efflux pump is essential for P. salmonis survival at critical florfenicol concentrations and for the generation of antibiotic-resistant bacterial strains.


Subject(s)
Anti-Bacterial Agents/pharmacology , Fishes/microbiology , Membrane Transport Proteins/genetics , Piscirickettsia/drug effects , Piscirickettsia/genetics , Thiamphenicol/analogs & derivatives , Animals , Aquaculture , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chile , Drug Resistance, Multiple, Bacterial/genetics , Ethidium/metabolism , Genes, MDR , Genome, Bacterial , Membrane Transport Proteins/metabolism , Microbial Sensitivity Tests , Piscirickettsia/pathogenicity , Thiamphenicol/pharmacology
17.
Fish Shellfish Immunol ; 51: 97-103, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26876354

ABSTRACT

Streptococcus phocae subsp. salmonis is a Gram-positive bacterium that causes mortality only in Atlantic salmon (Salmo salar) farmed in Chile, even when this species is co-cultured with rainbow trout (Oncorhynchus mykiss). This susceptibility could be determined by innate immune response components and their responses to bacterial infection. This fish pathogen shares subspecies status with Streptococcus phocae subsp. phocae isolated from seals. The present study compared innate immune system mechanisms in Atlantic salmon and rainbow trout when challenged with different S. phocae, including two isolates from Atlantic salmon (LM-08-Sp and LM-13-Sp) and two from seal (ATCC 51973(T) and P23). Streptococcus phocae growth was evaluated in the mucus and serum of both species, with rainbow trout samples evidencing inhibitory effects. Lysozyme activity supported this observation, with significantly higher (p < 0.01) expression in rainbow trout serum and mucus as compared to Atlantic salmon. No differences were found in phagocytic capacity between fish species when stimulated with ATCC 51973(T) and P23. Against all S. phocae strains, rainbow trout and Atlantic salmon showed up to two-fold increased bactericidal activity, and rainbow trout demonstrated up to three-fold greater reactive oxygen species production in macrophages. In conclusion, the non-specific humoral and cellular barriers of Atlantic salmon were immunologically insufficient against S. phocae subsp. salmonis, thereby facilitating streptococcosis. Moreover, the more robust response of rainbow trout to S. phocae could not be attributed to any specific component of the innate immune system, but was rather the consequence of a combined response by the evaluated components.


Subject(s)
Fish Diseases/immunology , Immunity, Innate , Oncorhynchus mykiss , Salmo salar , Streptococcal Infections/veterinary , Streptococcus/physiology , Animals , Chile , Disease Susceptibility/immunology , Disease Susceptibility/veterinary , Macrophages/immunology , Mucus/immunology , Streptococcal Infections/immunology
18.
Vet Microbiol ; 184: 94-101, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26854350

ABSTRACT

Piscirickettsia salmonis is one of the major fish pathogens affecting Chilean aquaculture. This Gram-negative bacterium is highly infectious and is the etiological agent of Piscirickettsiosis. Little is currently known about how the virulence factors expressed by P. salmonis are delivered to host cells. However, it is known that several Gram-negative microorganisms constitutively release outer membrane vesicles (OMVs), which have been implicated in the delivery of virulence factors to host cells. In this study, OMVs production by P. salmonis was observed during infection in CHSE-214 cells and during normal growth in liquid media. The OMVs were spherical vesicles ranging in size between 25 and 145 nm. SDS-PAGE analysis demonstrated that the protein profile of the OMVs was similar to the outer membrane protein profile of P. salmonis. Importantly, the bacterial chaperonin Hsp60 was found in the OMVs of P. salmonis by Western-blot and LC-MS/MS analyses. Finally, in vitro infection assays showed that purified OMVs generated a cytopathic effect on CHSE-214 cells, suggesting a role in pathogenesis. Therefore, OMVs might be an important vehicle for delivering effector molecules to host cells during P. salmonis infection.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Piscirickettsia/metabolism , Virulence Factors/metabolism , Animals , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/ultrastructure , Cell Line , Cell Survival , Chaperonin 60/chemistry , In Vitro Techniques , Microscopy, Electron, Transmission , Piscirickettsia/genetics , Piscirickettsia/pathogenicity , Proteome/genetics , Virulence Factors/genetics
19.
J Neuropathol Exp Neurol ; 72(9): 846-60, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23965744

ABSTRACT

Disruption/denudation of the ependymal lining has been associated with the pathogenesis of various human CNS disorders, including hydrocephalus, spina bifida aperta, and periventricular heterotopia. It has been traditionally considered that ependymal denudation is a consequence of mechanical forces such as ventricular enlargement. New evidence indicates that ependymal disruption can precede ventricular dilation, but the cellular and molecular mechanisms involved in the onset of ependymal denudation are unknown. Here, we present a novel model to study ependymal cell pathophysiology and demonstrate that selective disruption of N-cadherin-based adherens junctions is sufficient to provoke progressive ependymal denudation. Blocking N-cadherin function using specific peptides that interfere with the histidine-alanine-valine extracellular homophilic interaction domain caused early pathologic changes characterized by disruption of zonula adherens and abnormal intracellular accumulation of N-cadherin. These changes then triggered massive apoptosis of ependymal cells and denudation of brain ventricular walls. Because no typical extrinsic mechanical factors such as elevated pressure or stretching forces are involved in this model, the critical role of N-cadherin-based adherens junctions in ependymal survival/physiology is highlighted. Furthermore, the results suggest that abnormal adherens junctions between ependymal cells should be considered as key components of the pathogenesis of CNS disorders associated with ependymal denudation.


Subject(s)
Adherens Junctions/metabolism , Antigens, CD/metabolism , Apoptosis/physiology , Brain/cytology , Cadherins/metabolism , Ependyma/metabolism , Adherens Junctions/drug effects , Analysis of Variance , Animals , Antibodies/pharmacology , Antigens, CD/chemistry , Antigens, CD/immunology , Apoptosis/drug effects , Cadherins/chemistry , Cadherins/immunology , Cattle , Dose-Response Relationship, Drug , Electric Impedance , Electrophysiological Phenomena/drug effects , Ependyma/cytology , Ependyma/ultrastructure , Glial Fibrillary Acidic Protein/metabolism , Humans , In Situ Nick-End Labeling , Microscopy, Electron, Transmission , Organ Culture Techniques , Peptide Hydrolases/immunology , Subcellular Fractions/metabolism , Subcellular Fractions/ultrastructure , Time Factors
20.
PLoS One ; 4(3): e4963, 2009.
Article in English | MEDLINE | ID: mdl-19305511

ABSTRACT

Hydrocephalus with hop gait (hyh) is a recessive inheritable disease that arose spontaneously in a mouse strain. A missense mutation in the Napa gene that results in the substitution of a methionine for isoleucine at position 105 (M105I) of alphaSNAP has been detected in these animals. alphaSNAP is a ubiquitous protein that plays a key role in membrane fusion and exocytosis. In this study, we found that male hyh mice with a mild phenotype produced morphologically normal and motile sperm, but had a strongly reduced fertility. When stimulated with progesterone or A23187 (a calcium ionophore), sperm from these animals had a defective acrosome reaction. It has been reported that the M105I mutation affects the expression but not the function of the protein. Consistent with an hypomorphic phenotype, the testes and epididymides of hyh mice had low amounts of the mutated protein. In contrast, sperm had alphaSNAP levels indistinguishable from those found in wild type cells, suggesting that the mutated protein is not fully functional for acrosomal exocytosis. Corroborating this possibility, addition of recombinant wild type alphaSNAP rescued exocytosis in streptolysin O-permeabilized sperm, while the mutant protein was ineffective. Moreover, addition of recombinant alphaSNAP. M105I inhibited acrosomal exocytosis in permeabilized human and wild type mouse sperm. We conclude that the M105I mutation affects the expression and also the function of alphaSNAP, and that a fully functional alphaSNAP is necessary for acrosomal exocytosis, a key event in fertilization.


Subject(s)
Acrosome Reaction/physiology , Mice, Mutant Strains , Point Mutation , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/genetics , Animals , Epididymis/metabolism , Exocytosis/physiology , Female , Fertility/physiology , Fertilization in Vitro , Humans , Male , Mice , Mice, Inbred C57BL , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/metabolism , Spermatozoa/cytology , Spermatozoa/metabolism , Testis/cytology , Testis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL