Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Science ; 383(6688): 1240-1244, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38484053

ABSTRACT

When ecological and evolutionary dynamics occur on comparable timescales, persistence of the ensuing eco-evolutionary dynamics requires both ecological and evolutionary stability. This unites key questions in ecology and evolution: How do species coexist, and what maintains genetic variation in a population? In this work, we investigated a host-parasitoid system in which pea aphid hosts rapidly evolve resistance to Aphidius ervi parasitoids. Field data and mathematical simulations showed that heterogeneity in parasitoid dispersal can generate variation in parasitism-mediated selection on hosts through time and space. Experiments showed how evolutionary trade-offs plus moderate host dispersal across this selection mosaic cause host-parasitoid coexistence and maintenance of genetic variation in host resistance. Our results show how dispersal can stabilize both the ecological and evolutionary components of eco-evolutionary dynamics.


Subject(s)
Animal Distribution , Aphids , Host-Parasite Interactions , Wasps , Animals , Biological Evolution , Host-Parasite Interactions/genetics , Genetic Variation
2.
Environ Microbiol ; 25(12): 3333-3348, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37864320

ABSTRACT

Heritable, facultative symbionts are common in arthropods, often functioning in host defence. Despite moderately reduced genomes, facultative symbionts retain evolutionary potential through mobile genetic elements (MGEs). MGEs form the primary basis of strain-level variation in genome content and architecture, and often correlate with variability in symbiont-mediated phenotypes. In pea aphids (Acyrthosiphon pisum), strain-level variation in the type of toxin-encoding bacteriophages (APSEs) carried by the bacterium Hamiltonella defensa correlates with strength of defence against parasitoids. However, co-inheritance creates difficulties for partitioning their relative contributions to aphid defence. Here we identified isolates of H. defensa that were nearly identical except for APSE type. When holding H. defensa genotype constant, protection levels corresponded to APSE virulence module type. Results further indicated that APSEs move repeatedly within some H. defensa clades providing a mechanism for rapid evolution in anti-parasitoid defences. Strain variation in H. defensa also correlates with the presence of a second symbiont Fukatsuia symbiotica. Predictions that nutritional interactions structured this coinfection were not supported by comparative genomics, but bacteriocin-containing plasmids unique to co-infecting strains may contribute to their common pairing. In conclusion, strain diversity, and joint capacities for horizontal transfer of MGEs and symbionts, are emergent players in the rapid evolution of arthropods.


Subject(s)
Aphids , Bacteriophages , Wasps , Animals , Aphids/genetics , Aphids/microbiology , Symbiosis/genetics , Enterobacteriaceae/genetics , Genotype , Bacteriophages/genetics
3.
J Evol Biol ; 36(12): 1712-1730, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37702036

ABSTRACT

Most insects harbour influential, yet non-essential heritable microbes in their hemocoel. Communities of these symbionts exhibit low diversity. But their frequent multi-species nature raises intriguing questions on roles for symbiont-symbiont synergies in host adaptation, and on the stability of the symbiont communities, themselves. In this study, we build on knowledge of species-defined symbiont community structure across US populations of the pea aphid, Acyrthosiphon pisum. Through extensive symbiont genotyping, we show that pea aphids' microbiomes can be more precisely defined at the symbiont strain level, with strain variability shaping five out of nine previously reported co-infection trends. Field data provide a mixture of evidence for synergistic fitness effects and symbiont hitchhiking, revealing causes and consequences of these co-infection trends. To test whether within-host metabolic interactions predict common versus rare strain-defined communities, we leveraged the high relatedness of our dominant, community-defined symbiont strains vs. 12 pea aphid-derived Gammaproteobacteria with sequenced genomes. Genomic inference, using metabolic complementarity indices, revealed high potential for cooperation among one pair of symbionts-Serratia symbiotica and Rickettsiella viridis. Applying the expansion network algorithm, through additional use of pea aphid and obligate Buchnera symbiont genomes, Serratia and Rickettsiella emerged as the only symbiont community requiring both parties to expand holobiont metabolism. Through their joint expansion of the biotin biosynthesis pathway, these symbionts may span missing gaps, creating a multi-party mutualism within their nutrient-limited, phloem-feeding hosts. Recent, complementary gene inactivation, within the biotin pathways of Serratia and Rickettsiella, raises further questions on the origins of mutualisms and host-symbiont interdependencies.


Subject(s)
Aphids , Coinfection , Coxiellaceae , Gammaproteobacteria , Animals , Aphids/genetics , Aphids/microbiology , Pisum sativum , Biotin , Coxiellaceae/genetics , Symbiosis/genetics
4.
Proc Natl Acad Sci U S A ; 120(19): e2304493120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37126694
5.
Mol Ecol ; 32(4): 936-950, 2023 02.
Article in English | MEDLINE | ID: mdl-36458425

ABSTRACT

Insects often harbour heritable symbionts that provide defence against specialized natural enemies, yet little is known about symbiont protection when hosts face simultaneous threats. In pea aphids (Acyrthosiphon pisum), the facultative endosymbiont Hamiltonella defensa confers protection against the parasitoid, Aphidius ervi, and Regiella insecticola protects against aphid-specific fungal pathogens, including Pandora neoaphidis. Here, we investigated whether these two common aphid symbionts protect against a specialized virus A. pisum virus (APV), and whether their antifungal and antiparasitoid services are impacted by APV infection. We found that APV imposed large fitness costs on symbiont-free aphids and these costs were elevated in aphids also housing H. defensa. In contrast, APV titres were significantly reduced and costs to APV infection were largely eliminated in aphids with R. insecticola. To our knowledge, R. insecticola is the first aphid symbiont shown to protect against a viral pathogen, and only the second arthropod symbiont reported to do so. In contrast, APV infection did not impact the protective services of either R. insecticola or H. defensa. To better understand APV biology, we produced five genomes and examined transmission routes. We found that moderate rates of vertical transmission, combined with horizontal transfer through food plants, were the major route of APV spread, although lateral transfer by parasitoids also occurred. Transmission was unaffected by facultative symbionts. In summary, the presence and species identity of facultative symbionts resulted in highly divergent outcomes for aphids infected with APV, while not impacting defensive services that target other enemies. These findings add to the diverse phenotypes conferred by aphid symbionts, and to the growing body of work highlighting extensive variation in symbiont-mediated interactions.


Subject(s)
Aphids , RNA Viruses , Wasps , Animals , Aphids/genetics , Symbiosis/genetics , Enterobacteriaceae/genetics , RNA Viruses/genetics
6.
J Fungi (Basel) ; 8(5)2022 May 06.
Article in English | MEDLINE | ID: mdl-35628740

ABSTRACT

Cordyceps chanhua is an important cordycipitoid mushroom widely used in Asia and beyond. Beauvericin (BEA), one of the bioactive compounds of C. chanhua, has attracted much attention because of its medicinal value and food safety risk. In order to clear up the relationship between oxidative stress and BEA synthesis, we investigated the impact of H2O2-induced oxidative stress on the secondary metabolism of C. chanhua using untargeted metabolomics and a transcript profiling approach. Metabolic profiling of C. chanhua mycelia found that in total, 73 differential metabolites were identified, including organic acids, phospholipids, and non-ribosomal peptides (NRPs), especially the content of BEA, increasing 13-fold under oxidative stress treatment. Combining transcriptomic and metabolomic analyses, we found that the genes and metabolites associated with the NRP metabolism, especially the BEA biosynthesis, were highly significantly enriched under H2O2-induced stress, which indicated that the BEA metabolism might be positive in the resistance of C. chanhua to oxidative stress. These results not only aid in better understanding of the resistance mechanisms of C. chanhua against oxidative stress but also might be helpful for molecular breeding of C. chanhua with low BEA content.

7.
Virol J ; 18(1): 219, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34758862

ABSTRACT

BACKGROUND: Most phages infect free-living bacteria but a few have been identified that infect heritable symbionts of insects or other eukaryotes. Heritable symbionts are usually specialized and isolated from other bacteria with little known about the origins of associated phages. Hamiltonella defensa is a heritable bacterial symbiont of aphids that is usually infected by a tailed, double-stranded DNA phage named APSE. METHODS: We conducted comparative genomic and phylogenetic studies to determine how APSE is related to other phages and prophages. RESULTS: Each APSE genome was organized into four modules and two predicted functional units. Gene content and order were near-fully conserved in modules 1 and 2, which encode predicted DNA metabolism genes, and module 4, which encodes predicted virion assembly genes. Gene content of module 3, which contains predicted toxin, holin and lysozyme genes differed among haplotypes. Comparisons to other sequenced phages suggested APSE genomes are mosaics with modules 1 and 2 sharing similarities with Bordetella-Bcep-Xylostella fastidiosa-like podoviruses, module 4 sharing similarities with P22-like podoviruses, and module 3 sharing no similarities with known phages. Comparisons to other sequenced bacterial genomes identified APSE-like elements in other heritable insect symbionts (Arsenophonus spp.) and enteric bacteria in the family Morganellaceae. CONCLUSIONS: APSEs are most closely related to phage elements in the genus Arsenophonus and other bacteria in the Morganellaceae.


Subject(s)
Aphids , Bacteriophages , Animals , Bacteriophages/genetics , Enterobacteriaceae/genetics , Genomics , Phylogeny , Symbiosis/genetics
8.
Insects ; 12(9)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34564245

ABSTRACT

Insects harbor a variety of maternally inherited bacterial symbionts. As such, variation in symbiont presence/absence, in the combinations of harbored symbionts, and in the genotypes of harbored symbiont species provide heritable genetic variation of potential use in the insects' adaptive repertoires. Understanding the natural importance of symbionts is challenging but studying their dynamics over time can help to elucidate the potential for such symbiont-driven insect adaptation. Toward this end, we studied the seasonal dynamics of six maternally transferred bacterial symbiont species in the multivoltine pea aphid (Acyrthosiphon pisum). Our sampling focused on six alfalfa fields in southeastern Pennsylvania, and spanned 14 timepoints within the 2012 growing season, in addition to two overwintering periods. To test and generate hypotheses on the natural relevance of these non-essential symbionts, we examined whether symbiont dynamics correlated with any of ten measured environmental variables from the 2012 growing season, including some of known importance in the lab. We found that five symbionts changed prevalence across one or both overwintering periods, and that the same five species underwent such frequency shifts across the 2012 growing season. Intriguingly, the frequencies of these dynamic symbionts showed robust correlations with a subset of our measured environmental variables. Several of these trends supported the natural relevance of lab-discovered symbiont roles, including anti-pathogen defense. For a seventh symbiont-Hamiltonella defensa-studied previously across the same study periods, we tested whether a reported correlation between prevalence and temperature stemmed not from thermally varying host-level fitness effects, but from selection on co-infecting symbionts or on aphid-encoded alleles associated with this bacterium. In general, such "hitchhiking" effects were not evident during times with strongly correlated Hamiltonella and temperature shifts. However, we did identify at least one time period in which Hamiltonella spread was likely driven by selection on a co-infecting symbiont-Rickettsiella viridis. Recognizing the broader potential for such hitchhiking, we explored selection on co-infecting symbionts as a possible driver behind the dynamics of the remaining six species. Out of twelve examined instances of symbiont dynamics unfolding across 2-week periods or overwintering spans, we found eight in which the focal symbiont underwent parallel frequency shifts under single infection and one or more co-infection contexts. This supported the idea that phenotypic variation created by the presence/absence of individual symbionts is a direct target for selection, and that symbiont effects can be robust under co-habitation with other symbionts. Contrastingly, in two cases, we found that selection may target phenotypes emerging from symbiont co-infections, with specific species combinations driving overall trends for the focal dynamic symbionts, without correlated change under single infection. Finally, in three cases-including the one described above for Hamiltonella-our data suggested that incidental co-infection with a (dis)favored symbiont could lead to large frequency shifts for "passenger" symbionts, conferring no apparent cost or benefit. Such hitchhiking has rarely been studied in heritable symbiont systems. We propose that it is more common than appreciated, given the widespread nature of maternally inherited bacteria, and the frequency of multi-species symbiotic communities across insects.

9.
Mol Ecol ; 30(10): 2449-2472, 2021 05.
Article in English | MEDLINE | ID: mdl-33876478

ABSTRACT

Facultative, heritable endosymbionts are found at intermediate prevalence within most insect species, playing frequent roles in their hosts' defence against environmental pressures. Focusing on Hamiltonella defensa, a common bacterial endosymbiont of aphids, we tested the hypothesis that such pressures impose seasonal balancing selection, shaping a widespread infection polymorphism. In our studied pea aphid (Acyrthosiphon pisum) population, Hamiltonella frequencies ranged from 23.2% to 68.1% across a six-month longitudinal survey. Rapid spikes and declines were often consistent across fields, and we estimated that selection coefficients for Hamiltonella-infected aphids changed sign within this field season. Prior laboratory research suggested antiparasitoid defence as the major Hamiltonella benefit, and costs under parasitoid absence. While a prior field study suggested these forces can sometimes act as counter-weights in a regime of seasonal balancing selection, our present survey showed no significant relationship between parasitoid wasps and Hamiltonella prevalence. Field cage experiments provided some explanation: parasitoids drove modest ~10% boosts to Hamiltonella frequencies that would be hard to detect under less controlled conditions. They also showed that Hamiltonella was not always costly under parasitoid exclusion, contradicting another prediction. Instead, our longitudinal survey - and two overwintering studies - showed temperature to be the strongest predictor of Hamiltonella prevalence. Matching some prior lab discoveries, this suggested that thermally sensitive costs and benefits, unrelated to parasitism, can shape Hamiltonella dynamics. These results add to a growing body of evidence for rapid, seasonal adaptation in multivoltine organisms, suggesting that such adaptation can be mediated through the diverse impacts of heritable bacterial endosymbionts.


Subject(s)
Aphids , Wasps , Animals , Aphids/genetics , Genotype , Pisum sativum , Seasons , Symbiosis , Temperature , Wasps/genetics
10.
J Anim Ecol ; 89(8): 1895-1905, 2020 08.
Article in English | MEDLINE | ID: mdl-32324901

ABSTRACT

Ecologically relevant symbioses are widespread in terrestrial arthropods but based on recent findings these specialized interactions are likely to be especially vulnerable to climate warming. Importantly, empirical data and climate models indicate that warming is occurring asynchronously, with night-time temperatures increasing faster than daytime temperatures. Daytime (DTW) and night-time warming (NTW) may impact ectothermic animals and their interactions differently as DTW results in greater daily temperature variation and moves organisms nearer to their thermal limits, while NTW avoids thermal limits and may relieve constraints of cooler night-time temperatures; a nuance that has largely been ignored in the literature. In laboratory experiments, we investigated how the timing of warming influences a widespread defensive mutualism involving the pea aphid Acyrthosiphon pisum, and its heritable symbiont, Hamiltonella defensa, which protects against an important natural enemy, the parasitic wasp Aphidius ervi. Three aphid sublines were experimentally created from single aphid genotype susceptible to A. ervi: one line infected with a highly protective H. defensa strain, one infected with a moderately protective strain and one without any facultative symbiont. We examined aphid fitness in the presence and absence of parasitoids and when exposed to an average 2.5°C increase occurring across three warming scenarios (night-time vs. daytime vs. uniform) relative to no-warming controls. An increase of 2.5°C, as predicted to occur by the IPCC before 2100, was sufficient to disable the aphid defensive mutualism regardless of the timing of warming; a surprising result given that the daily maxima for control and NTW scenarios were identical. We also found that warming negatively impacted (a) symbiont-mediated interactions between host and parasitoid more than symbiont-free ones; (b) species interactions (host-parasitoid) more than each participant independently and (c) aphids more than parasitoids even though higher trophic levels are generally predicted to be more affected by warming. Here we show that 2.5°C warming, regardless of timing, negatively impacted a common microbe-mediated defensive mutualism. While this was a laboratory-based study, results suggest that temperature increases predicted in the near-term may disrupt the many ecological symbioses present in terrestrial ecosystems.


Subject(s)
Aphids , Wasps , Animals , Ecosystem , Enterobacteriaceae , Symbiosis
11.
Genome Biol Evol ; 11(12): 3510-3522, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31725149

ABSTRACT

Heritable symbionts are common in terrestrial arthropods and often provide beneficial services to hosts. Unlike obligate, nutritional symbionts that largely persist under strict host control within specialized host cells, heritable facultative symbionts exhibit large variation in within-host lifestyles and services rendered with many retaining the capacity to transition among roles. One enigmatic symbiont, Candidatus Fukatsuia symbiotica, frequently infects aphids with reported roles ranging from pathogen, defensive symbiont, mutualism exploiter, and nutritional co-obligate symbiont. Here, we used an in vitro culture-assisted protocol to sequence the genome of a facultative strain of Fukatsuia from pea aphids (Acyrthosiphon pisum). Phylogenetic and genomic comparisons indicate that Fukatsuia is an aerobic heterotroph, which together with Regiella insecticola and Hamiltonella defensa form a clade of heritable facultative symbionts within the Yersiniaceae (Enterobacteriales). These three heritable facultative symbionts largely share overlapping inventories of genes associated with housekeeping functions, metabolism, and nutrient acquisition, while varying in complements of mobile DNA. One unusual feature of Fukatsuia is its strong tendency to occur as a coinfection with H. defensa. However, the overall similarity of gene inventories among aphid heritable facultative symbionts suggests that metabolic complementarity is not the basis for coinfection, unless playing out on a H. defensa strain-specific basis. We also compared the pea aphid Fukatsuia with a strain from the aphid Cinara confinis (Lachninae) where it is reported to have transitioned to co-obligate status to support decaying Buchnera function. Overall, the two genomes are very similar with no clear genomic signatures consistent with such a transition, which suggests co-obligate status in C. confinis was a recent event.


Subject(s)
Aphids/physiology , Gammaproteobacteria/physiology , Animals , Gammaproteobacteria/classification , Gammaproteobacteria/genetics , Gammaproteobacteria/pathogenicity , Genome, Bacterial , Symbiosis
13.
Microbiology (Reading) ; 165(9): 985-989, 2019 09.
Article in English | MEDLINE | ID: mdl-31140970

ABSTRACT

Insects are frequently infected with inherited facultative symbionts known to provide a range of conditionally beneficial services, including host protection. Pea aphids (Acyrthosiphon pisum) often harbour the bacterium Hamiltonella defensa, which together with its associated bacteriophage A. pisum secondary endosymbiont (APSE) confer protection against an important natural enemy, the parasitic wasp Aphidius ervi. Previous studies showed that spontaneous loss of phage APSE resulted in the complete loss of the protective phenotype. Here, we demonstrate that APSEs can be experimentally transferred into phage-free (i.e. non-protecting) Hamiltonella strains. Unexpectedly, trials using injections of phage particles alone failed, with successful transfer occurring only when APSE and Hamiltonella were simultaneously injected. After transfer, stable establishment of APSE fully restored anti-parasitoid defenses. Thus, phages associated with heritable bacterial symbionts can move horizontally among symbiont strains facilitating the rapid transfer of ecologically important traits although natural barriers may preclude regular exchange.


Subject(s)
Aphids/microbiology , Bacteriophages , Enterobacteriaceae/virology , Symbiosis , Animals , DNA Transposable Elements , Disease Transmission, Infectious , Host-Parasite Interactions , Wasps
14.
Curr Opin Insect Sci ; 32: 1-7, 2019 04.
Article in English | MEDLINE | ID: mdl-31113620

ABSTRACT

Protective mutualisms are common in nature and include insect infections with cryptic symbionts that defend against pathogens and parasites. An archetypal defensive symbiont, Hamiltonella defensa protects aphids against parasitoids by disabling wasp development. Successful defense requires H. defensa infection with bacteriophages (APSEs), which play other key roles in mutualism maintenance. Genomes of H. defensa strains are highly similar in gene inventories, varying primarily in mobile element content. Protective phenotypes are highly variable across aphid models depending on H. defensa/APSE, aphid and wasp genotypes. Infection frequencies of H. defensa are highly dynamic in field populations, influenced by a variety of selective and non-selective factors confounding biological control implications. Overall, H. defensa infections likely represent a global aphid protection network with effects radiating outward from focal interactions.


Subject(s)
Aphids/microbiology , Aphids/parasitology , Enterobacteriaceae/physiology , Animals , Aphids/genetics , Bacteriophages , Enterobacteriaceae/genetics , Enterobacteriaceae/virology , Symbiosis , Wasps/genetics , Wasps/microbiology
16.
Genome Biol Evol ; 10(3): 786-802, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29452355

ABSTRACT

Many insects host facultative, bacterial symbionts that confer conditional fitness benefits to their hosts. Hamiltonella defensa is a common facultative symbiont of aphids that provides protection against parasitoid wasps. Protection levels vary among strains of H. defensa that are also differentially infected by bacteriophages named APSEs. However, little is known about trait variation among strains because only one isolate has been fully sequenced. Generating complete genomes for facultative symbionts is hindered by relatively large genome sizes but low abundances in hosts like aphids that are very small. Here, we took advantage of methods for culturing H. defensa outside of aphids to generate complete genomes and transcriptome data for four strains of H. defensa from the pea aphid Acyrthosiphon pisum. Chosen strains also spanned the breadth of the H. defensa phylogeny and differed in strength of protection conferred against parasitoids. Results indicated that strains shared most genes with roles in nutrient acquisition, metabolism, and essential housekeeping functions. In contrast, the inventory of mobile genetic elements varied substantially, which generated strain specific differences in gene content and genome architecture. In some cases, specific traits correlated with differences in protection against parasitoids, but in others high variation between strains obscured identification of traits with likely roles in defense. Transcriptome data generated continuous distributions to genome assemblies with some genes that were highly expressed and others that were not. Single molecule real-time sequencing further identified differences in DNA methylation patterns and restriction modification systems that provide defense against phage infection.


Subject(s)
Aphids/microbiology , Enterobacteriaceae/genetics , Interspersed Repetitive Sequences/genetics , Phylogeny , Animals , Aphids/parasitology , Bacteriophages/genetics , DNA Methylation/genetics , Enterobacteriaceae/virology , Genomics , Symbiosis/genetics , Wasps/pathogenicity
17.
PLoS One ; 13(1): e0190763, 2018.
Article in English | MEDLINE | ID: mdl-29293663

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0180729.].

18.
J Anim Ecol ; 87(2): 464-477, 2018 03.
Article in English | MEDLINE | ID: mdl-28378393

ABSTRACT

The pea aphid, Acyrthosiphon pisum, maintains extreme variation in resistance to its most common parasitoid wasp enemy, Aphidius ervi, which is sourced from two known mechanisms: protective bacterial symbionts, most commonly Hamiltonella defensa, or endogenously encoded defences. We have recently found that individual aphids may employ each defence individually, occasionally both defences together, or neither. In field populations, Hamiltonella-infected aphids are found at low to moderate frequencies and while less is known about the frequency of resistant genotypes, they show up less often than susceptible genotypes in field collections. To better understand these patterns, we sought to compare the strengths and costs of both types of defence, individually and together, in order to elucidate the selective pressures that maintain multi-modal defence mechanisms or that may favour one over the other. We experimentally infected five aphid genotypes (two lowly and three highly resistant), each with two symbiont strains, Hamiltonella-APSE8 (moderate protection) and Hamiltonella-APSE3 (high protection). This resulted in three sublines per genotype: uninfected, +APSE8 and +APSE3. Each of the 15 total sublines was first subjected to a parasitism assay to determine its resistance phenotype and in a second experiment, a subset was chosen to compare fitness (fecundity and survivorship) in the presence and absence of parasitism. In susceptible aphid genotypes, parasitized sublines infected with Hamiltonella generally showed increased protection with direct fitness benefits, but clear infection costs to fitness in the absence of parasitism. In resistant genotypes, Hamiltonella infection rarely conferred additional protection, often further reduced fecundity and survivorship when enemy challenged, and resulted in constitutive fitness costs in the absence of parasitism. We also identified strong aphid genotype × symbiont-strain interactions, such that the best defensive strategy against parasitoids varied for each aphid genotype; one performed best with no protective symbionts, the others with particular strains of Hamiltonella. This surprising variability in outcomes helps explain why Hamiltonella infection frequencies are often intermediate and do not strongly track parasitism frequencies in field populations. We also find that variation in endogenous traits, such as resistance, among host genotypes may offer redundancy and generally limit the invasion potential of mutualistic microbes in insects.


Subject(s)
Aphids , Enterobacteriaceae/physiology , Genes, Insect/genetics , Host Microbial Interactions/immunology , Wasps/physiology , Animals , Aphids/genetics , Aphids/immunology , Aphids/microbiology , Aphids/parasitology , Fertility , Genotype , Wasps/microbiology
19.
Mol Ecol ; 27(8): 2039-2056, 2018 04.
Article in English | MEDLINE | ID: mdl-29215202

ABSTRACT

Animal-associated microbiomes are often comprised of structured, multispecies communities, with particular microbes showing trends of co-occurrence or exclusion. Such structure suggests variable community stability, or variable costs and benefits-possibilities with implications for symbiont-driven host adaptation. In this study, we performed systematic screening for maternally transmitted, facultative endosymbionts of the pea aphid, Acyrthosiphon pisum. Sampling across six locales, with up to 5 years of collection in each, netted significant and consistent trends of community structure. Co-infections between Serratia symbiotica and Rickettsiella viridis were more common than expected, while Rickettsia and X-type symbionts colonized aphids with Hamiltonella defensa more often than expected. Spiroplasma co-infected with other endosymbionts quite rarely, showing tendencies to colonize as a single species monoculture. Field estimates of maternal transmission rates help to explain our findings: while Serratia and Rickettsiella improved each other's transmission, Spiroplasma reduced transmission rates of co-infecting endosymbionts. In summary, our findings show that North American pea aphids harbour recurring combinations of facultative endosymbionts. Common symbiont partners play distinct roles in pea aphid biology, suggesting the creation of "generalist" aphids receiving symbiont-based defence against multiple ecological stressors. Multimodal selection, at the host level, may thus partially explain our results. But more conclusively, our findings show that within-host microbe interactions, and their resulting impacts on transmission rates, are an important determinant of community structure. Widespread distributions of heritable symbionts across plants and invertebrates hint at the far-reaching implications for these findings, and our work further shows the benefits of symbiosis research within a natural context.


Subject(s)
Aphids/microbiology , Coinfection/microbiology , Ecology , Symbiosis/genetics , Animals , Aphids/genetics , Coinfection/genetics , Coxiellaceae/genetics , Coxiellaceae/pathogenicity , Host Specificity/genetics , Microbiota/genetics , Pisum sativum/parasitology , Serratia/genetics , Serratia/pathogenicity
20.
Mol Ecol ; 27(8): 2138-2151, 2018 04.
Article in English | MEDLINE | ID: mdl-29087015

ABSTRACT

Environmental factors, including temperature, can have large effects on species interactions, including mutualisms and antagonisms. Most insect species are infected with heritable bacterial symbionts with many protecting their hosts from natural enemies. However, many symbionts or their products are thermally sensitive; hence, their effectiveness may vary across a range of temperatures. In the pea aphid, Acyrthosiphon pisum, the bacterial symbiont Hamiltonella defensa and its associated APSE bacteriophages confer resistance to this aphid's dominant parasitoid, Aphidius ervi. Here, we investigate the effects of temperature on both endogenous and symbiont-based protection against this parasitoid. We also explored the defensive properties of the X-type symbiont, a bacterium hypothesized to shape aphid defence when co-occurring with H. defensa. We show that H. defensa protection fails at higher temperatures, although some aphid genotype and H. defensa strain combinations are more robust than others at moderately warmer temperatures. We also found that a single X-type strain neither defended against parasitism by A. ervi nor rescued lost H. defensa protection at higher temperatures. In contrast, endogenous aphid resistance was effective across temperatures, revealing that these distinct defensive modes are not equally robust to changing environments. Through a survey of field-collected pea aphids, we found a negative correlation between H. defensa frequencies and average daily temperatures across North American locales, fitting expectations for reduced symbiont benefits under warm climates. Based on these findings, we propose that rising global temperatures could promote the widespread breakdown of defensive mutualisms, a prospect with implications for both human and ecosystem health.


Subject(s)
Aphids/microbiology , Bacteriophages/genetics , Ecosystem , Symbiosis/genetics , Animals , Aphids/genetics , Aphids/parasitology , Bacteriophages/physiology , Enterobacteriaceae/genetics , Enterobacteriaceae/pathogenicity , Enterobacteriaceae/virology , Genotype , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...