Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Front Mol Biosci ; 9: 898627, 2022.
Article in English | MEDLINE | ID: mdl-35911960

ABSTRACT

Computational methods in protein engineering often require encoding amino acid sequences, i.e., converting them into numeric arrays. Physicochemical properties are a typical choice to define encoders, where we replace each amino acid by its value for a given property. However, what property (or group thereof) is best for a given predictive task remains an open problem. In this work, we generalize property-based encoding strategies to maximize the performance of predictive models in protein engineering. First, combining text mining and unsupervised learning, we partitioned the AAIndex database into eight semantically-consistent groups of properties. We then applied a non-linear PCA within each group to define a single encoder to represent it. Then, in several case studies, we assess the performance of predictive models for protein and peptide function, folding, and biological activity, trained using the proposed encoders and classical methods (One Hot Encoder and TAPE embeddings). Models trained on datasets encoded with our encoders and converted to signals through the Fast Fourier Transform (FFT) increased their precision and reduced their overfitting substantially, outperforming classical approaches in most cases. Finally, we propose a preliminary methodology to create de novo sequences with desired properties. All these results offer simple ways to increase the performance of general and complex predictive tasks in protein engineering without increasing their complexity.

2.
J Transl Med ; 20(1): 373, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35982500

ABSTRACT

BACKGROUND: Recently, extensive cancer genomic studies have revealed mutational and clinical data of large cohorts of cancer patients. For example, the Pan-Lung Cancer 2016 dataset (part of The Cancer Genome Atlas project), summarises the mutational and clinical profiles of different subtypes of Lung Cancer (LC). Mutational and clinical signatures have been used independently for tumour typification and prediction of metastasis in LC patients. Is it then possible to achieve better typifications and predictions when combining both data streams? METHODS: In a cohort of 1144 Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LSCC) patients, we studied the number of missense mutations (hereafter, the Total Mutational Load TML) and distribution of clinical variables, for different classes of patients. Using the TML and different sets of clinical variables (tumour stage, age, sex, smoking status, and packs of cigarettes smoked per year), we built Random Forest classification models that calculate the likelihood of developing metastasis. RESULTS: We found that LC patients different in age, smoking status, and tumour type had significantly different mean TMLs. Although TML was an informative feature, its effect was secondary to the "tumour stage" feature. However, its contribution to the classification is not redundant with the latter; models trained using both TML and tumour stage performed better than models trained using only one of these variables. We found that models trained in the entire dataset (i.e., without using dimensionality reduction techniques) and without resampling achieved the highest performance, with an F1 score of 0.64 (95%CrI [0.62, 0.66]). CONCLUSIONS: Clinical variables and TML should be considered together when assessing the likelihood of LC patients progressing to metastatic states, as the information these encode is not redundant. Altogether, we provide new evidence of the need for comprehensive diagnostic tools for metastasis.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation/genetics
3.
Front Nutr ; 9: 831696, 2022.
Article in English | MEDLINE | ID: mdl-35252308

ABSTRACT

A growing body of evidence indicates that dietary polyphenols could be used as an early intervention to treat glucose-insulin (G-I) dysregulation. However, studies report heterogeneous information, and the targets of the intervention remain largely elusive. In this work, we provide a general methodology to quantify the effects of any given polyphenol-rich food or formulae over glycemic regulation in a patient-wise manner using an Oral Glucose Tolerance Test (OGTT). We use a mathematical model to represent individual OGTT curves as the coordinated action of subsystems, each one described by a parameter with physiological interpretation. Using the parameter values calculated for a cohort of 1198 individuals, we propose a statistical model to calculate the risk of dysglycemia and the coordination among subsystems for each subject, thus providing a continuous and individual health assessment. This method allows identifying individuals at high risk of dysglycemia-which would have been missed with traditional binary diagnostic methods-enabling early nutritional intervention with a polyphenol-supplemented diet where it is most effective and desirable. Besides, the proposed methodology assesses the effectiveness of interventions over time when applied to the OGTT curves of a treated individual. We illustrate the use of this method in a case study to assess the dose-dependent effects of Delphinol® on reducing dysglycemia risk and improving the coordination between subsystems. Finally, this strategy enables, on the one hand, the use of low-cost, non-invasive methods in population-scale nutritional studies. On the other hand, it will help practitioners assess the effectiveness of an intervention based on individual vulnerabilities and adapt the treatment to manage dysglycemia and avoid its progression into disease.

6.
Pharmaceutics ; 13(11)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34834381

ABSTRACT

Gold nanoparticles (AuNP) capped with biocompatible layers have functional optical, chemical, and biological properties as theranostic agents in biomedicine. The ferritin protein containing in situ synthesized AuNPs has been successfully used as an effective and completely biocompatible nanocarrier for AuNPs in human cell lines and animal experiments in vivo. Ferritin can be uptaken by different cell types through receptor-mediated endocytosis. Despite these advantages, few efforts have been made to evaluate the toxicity and cellular internalization of AuNP-containing ferritin nanocages. In this work, we study the potential of human heavy-chain (H) and light-chain (L) ferritin homopolymers as nanoreactors to synthesize AuNPs and their cytotoxicity and cellular uptake in different cell lines. The results show very low toxicity of ferritin-encapsulated AuNPs on different human cell lines and demonstrate that efficient cellular ferritin uptake depends on the specific H or L protein chains forming the ferritin protein cage and the presence or absence of metallic cargo. Cargo-devoid apoferritin is poorly internalized in all cell lines, and the highest ferritin uptake was achieved with AuNP-loaded H-ferritin homopolymers in transferrin-receptor-rich cell lines, showing more than seven times more uptake than apoferritin.

7.
mBio ; 12(5): e0156321, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34634928

ABSTRACT

Wolbachia are endosymbiont bacteria known to infect arthropods causing different effects, such as cytoplasmic incompatibility and pathogen blocking in Aedes aegypti. Although several Wolbachia strains have been studied, there is little knowledge regarding the relationship between this bacterium and their hosts, particularly on their obligate endosymbiont nature and its pathogen blocking ability. Motivated by the potential applications on disease control, we developed a genome-scale model of two Wolbachia strains: wMel and the strongest Dengue blocking strain known to date: wMelPop. The obtained metabolic reconstructions exhibit an energy metabolism relying mainly on amino acids and lipid transport to support cell growth that is consistent with altered lipid and cholesterol metabolism in Wolbachia-infected mosquitoes. The obtained metabolic reconstruction was then coupled with a reconstructed mosquito model to retrieve a symbiotic genome-scale model accounting for 1,636 genes and 6,408 reactions of the Aedes aegypti-Wolbachia interaction system. Simulation of an arboviral infection in the obtained novel symbiotic model represents a metabolic scenario characterized by pathogen blocking in higher titer Wolbachia strains, showing that pathogen blocking by Wolbachia infection is consistent with competition for lipid and amino acid resources between arbovirus and this endosymbiotic bacteria. IMPORTANCE Arboviral diseases such as Zika and Dengue have been on the rise mainly due to climate change, and the development of new treatments and strategies to limit their spreading is needed. The use of Wolbachia as an approach for disease control has motivated new research related to the characterization of the mechanisms that underlie its pathogen-blocking properties. In this work, we propose a new approach for studying the metabolic interactions between Aedes aegypti and Wolbachia using genome-scale models, finding that pathogen blocking is mainly influenced by competition for the resources required for Wolbachia and viral replication.


Subject(s)
Aedes/microbiology , Aedes/virology , Arboviruses/pathogenicity , Genome, Bacterial , Symbiosis/genetics , Wolbachia/genetics , Wolbachia/virology , Amino Acids/metabolism , Animals , Arboviruses/metabolism , Host Microbial Interactions , Lipid Metabolism , Mosquito Vectors/microbiology , Mosquito Vectors/virology , Virus Replication/physiology , Wolbachia/metabolism
8.
PLoS Comput Biol ; 17(9): e1009288, 2021 09.
Article in English | MEDLINE | ID: mdl-34473693

ABSTRACT

Mass vaccination offers a promising exit strategy for the COVID-19 pandemic. However, as vaccination progresses, demands to lift restrictions increase, despite most of the population remaining susceptible. Using our age-stratified SEIRD-ICU compartmental model and curated epidemiological and vaccination data, we quantified the rate (relative to vaccination progress) at which countries can lift non-pharmaceutical interventions without overwhelming their healthcare systems. We analyzed scenarios ranging from immediately lifting restrictions (accepting high mortality and morbidity) to reducing case numbers to a level where test-trace-and-isolate (TTI) programs efficiently compensate for local spreading events. In general, the age-dependent vaccination roll-out implies a transient decrease of more than ten years in the average age of ICU patients and deceased. The pace of vaccination determines the speed of lifting restrictions; Taking the European Union (EU) as an example case, all considered scenarios allow for steadily increasing contacts starting in May 2021 and relaxing most restrictions by autumn 2021. Throughout summer 2021, only mild contact restrictions will remain necessary. However, only high vaccine uptake can prevent further severe waves. Across EU countries, seroprevalence impacts the long-term success of vaccination campaigns more strongly than age demographics. In addition, we highlight the need for preventive measures to reduce contagion in school settings throughout the year 2021, where children might be drivers of contagion because of them remaining susceptible. Strategies that maintain low case numbers, instead of high ones, reduce infections and deaths by factors of eleven and five, respectively. In general, policies with low case numbers significantly benefit from vaccination, as the overall reduction in susceptibility will further diminish viral spread. Keeping case numbers low is the safest long-term strategy because it considerably reduces mortality and morbidity and offers better preparedness against emerging escape or more contagious virus variants while still allowing for higher contact numbers (freedom) with progressing vaccinations.


Subject(s)
COVID-19 Vaccines , COVID-19 , Mass Vaccination , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/prevention & control , Child , Child, Preschool , European Union/statistics & numerical data , Humans , Infant , Infant, Newborn , Mass Vaccination/legislation & jurisprudence , Mass Vaccination/statistics & numerical data , Middle Aged , Young Adult
9.
Database (Oxford) ; 20212021 09 03.
Article in English | MEDLINE | ID: mdl-34478499

ABSTRACT

Peptides have attracted attention during the last decades due to their extraordinary therapeutic properties. Different computational tools have been developed to take advantage of existing information, compiling knowledge and making available the information for common users. Nevertheless, most related tools available are not user-friendly, present redundant information, do not clearly display the data, and usually are specific for particular biological activities, not existing so far, an integrated database with consolidated information to help research peptide sequences. To solve these necessities, we developed Peptipedia, a user-friendly web application and comprehensive database to search, characterize and analyse peptide sequences. Our tool integrates the information from 30 previously reported databases with a total of 92 055 amino acid sequences, making it the biggest repository of peptides with recorded activities to date. Furthermore, we make available a variety of bioinformatics services and statistical modules to increase our tool's usability. Moreover, we incorporated a robust assembled binary classification system to predict putative biological activities for peptide sequences. Our tools' significant differences with other existing alternatives become a substantial contribution for developing biotechnological and bioengineering applications for peptides. Peptipedia is available for non-commercial use as an open-access software, licensed under the GNU General Public License, version GPL 3.0. The web platform is publicly available at peptipedia.cl. Database URL: Both the source code and sample data sets are available in the GitHub repository https://github.com/ProteinEngineering-PESB2/peptipedia.


Subject(s)
Computational Biology , Software , Databases, Factual , Machine Learning , Peptides
10.
Viruses ; 13(5)2021 05 11.
Article in English | MEDLINE | ID: mdl-34064904

ABSTRACT

The emergence of SARS-CoV-2 variants, as observed with the D614G spike protein mutant and, more recently, with B.1.1.7 (501Y.V1), B.1.351 (501Y.V2) and B.1.1.28.1 (P.1) lineages, represent a continuous threat and might lead to strains of higher infectivity and/or virulence. We report on the occurrence of a SARS-CoV-2 haplotype with nine mutations including D614G/T307I double-mutation of the spike. This variant expanded and completely replaced previous lineages within a short period in the subantarctic Magallanes Region, southern Chile. The rapid lineage shift was accompanied by a significant increase of cases, resulting in one of the highest incidence rates worldwide. Comparative coarse-grained molecular dynamic simulations indicated that T307I and D614G belong to a previously unrecognized dynamic domain, interfering with the mobility of the receptor binding domain of the spike. The T307I mutation showed a synergistic effect with the D614G. Continuous surveillance of new mutations and molecular analyses of such variations are important tools to understand the molecular mechanisms defining infectivity and virulence of current and future SARS-CoV-2 strains.


Subject(s)
SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Antarctic Regions , Antibodies, Neutralizing/metabolism , Antibodies, Viral/genetics , COVID-19/epidemiology , COVID-19/genetics , COVID-19/metabolism , Chile , Haplotypes/genetics , Humans , Mutant Proteins/genetics , Mutation , Protein Binding , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/ultrastructure
11.
Chaos Solitons Fractals ; 150: 111156, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34149204

ABSTRACT

Non-pharmaceutical interventions (NPIs) have played a crucial role in controlling the spread of COVID-19. Nevertheless, NPI efficacy varies enormously between and within countries, mainly because of population and behavioral heterogeneity. In this work, we adapted a multi-group SEIRA model to study the spreading dynamics of COVID-19 in Chile, representing geographically separated regions of the country by different groups. We use national mobilization statistics to estimate the connectivity between regions and data from governmental repositories to obtain COVID-19 spreading and death rates in each region. We then assessed the effectiveness of different NPIs by studying the temporal evolution of the reproduction number R t . Analysing data-driven and model-based estimates of R t , we found a strong coupling of different regions, highlighting the necessity of organized and coordinated actions to control the spread of SARS-CoV-2. Finally, we evaluated different scenarios to forecast the evolution of COVID-19 in the most densely populated regions, finding that the early lifting of restriction probably will lead to novel outbreaks.

12.
Bioinformatics ; 37(10): 1480-1481, 2021 06 16.
Article in English | MEDLINE | ID: mdl-32997753

ABSTRACT

MOTIVATION: BRENDA is the largest enzyme functional database, containing information of 84 000 experimentally characterized enzyme entries. This database is an invaluable resource for researchers in the biological field, which classifies enzyme-related information in categories that are very useful to obtain specific functional and protein engineering information for enzyme families. However, the BRENDA web interface, the most used by researchers with a non-informatic background, does not allow the user to cross-reference data from different categories or sub-categories in the database. Obtaining information in an easy and fast way, in a friendly web interface, without the necessity to have a deep informatics knowledge, will facilitate and improve research in the enzymology and protein engineering field. RESULTS: We developed the Brenda Easy Search Tool (BEST), an interactive Shiny/R application that enables querying the BRENDA database for complex cross-tabulated characteristics, and retrieving enzyme-related parameters and information readily and efficiently, which can be used for the study of enzyme function or as an input for other bioinformatics tools. AVAILABILITY AND IMPLEMENTATION: BEST and its tutorial are freely available from https://pesb2.cl/best/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Search Engine , Software , Humans , Internet
13.
Chaos Solitons Fractals ; 139: 110087, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32834623

ABSTRACT

COVID-19 pandemic has reshaped our world in a timescale much shorter than what we can understand. Particularities of SARS-CoV-2, such as its persistence in surfaces and the lack of a curative treatment or vaccine against COVID-19, have pushed authorities to apply restrictive policies to control its spreading. As data drove most of the decisions made in this global contingency, their quality is a critical variable for decision-making actors, and therefore should be carefully curated. In this work, we analyze the sources of error in typically reported epidemiological variables and usual tests used for diagnosis, and their impact on our understanding of COVID-19 spreading dynamics. We address the existence of different delays in the report of new cases, induced by the incubation time of the virus and testing-diagnosis time gaps, and other error sources related to the sensitivity/specificity of the tests used to diagnose COVID-19. Using a statistically-based algorithm, we perform a temporal reclassification of cases to avoid delay-induced errors, building up new epidemiologic curves centered in the day where the contagion effectively occurred. We also statistically enhance the robustness behind the discharge/recovery clinical criteria in the absence of a direct test, which is typically the case of non-first world countries, where the limited testing capabilities are fully dedicated to the evaluation of new cases. Finally, we applied our methodology to assess the evolution of the pandemic in Chile through the Effective Reproduction Number Rt , identifying different moments in which data was misleading governmental actions. In doing so, we aim to raise public awareness of the need for proper data reporting and processing protocols for epidemiological modelling and predictions.

14.
Chaos Solitons Fractals ; 136: 109925, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32501373

ABSTRACT

The outbreak and propagation of COVID-19 have posed a considerable challenge to modern society. In particular, the different restrictive actions taken by governments to prevent the spread of the virus have changed the way humans interact and conceive interaction. Due to geographical, behavioral, or economic factors, different sub-groups among a population are more (or less) likely to interact, and thus to spread/acquire the virus. In this work, we present a general multi-group SEIRA model for representing the spread of COVID-19 among a heterogeneous population and test it in a numerical case of study. By highlighting its applicability and the ease with which its general formulation can be adapted to particular studies, we expect our model to lead us to a better understanding of the evolution of this pandemic and to better public-health policies to control it.

15.
Article in English | MEDLINE | ID: mdl-32232039

ABSTRACT

Existing mathematical models for the glucose-insulin (G-I) dynamics often involve variables that are not susceptible to direct measurement. Standard clinical tests for measuring G-I levels for diagnosing potential diseases are simple and relatively cheap, but seldom give enough information to allow the identification of model parameters within the range in which they have a biological meaning, thus generating a gap between mathematical modeling and any possible physiological explanation or clinical interpretation. In the present work, we present a synthetic mathematical model to represent the G-I dynamics in an Oral Glucose Tolerance Test (OGTT), which involves for the first time for OGTT-related models, Delay Differential Equations. Our model can represent the radically different behaviors observed in a studied cohort of 407 normoglycemic patients (the largest analyzed so far in parameter fitting experiments), all masked under the current threshold-based normality criteria. We also propose a novel approach to solve the parameter fitting inverse problem, involving the clustering of different G-I profiles, a simulation-based exploration of the feasible set, and the construction of an information function which reshapes it, based on the clinical records, experimental uncertainties, and physiological criteria. This method allowed an individual-wise recognition of the parameters of our model using small size OGTT data (5 measurements) directly, without modifying the routine procedures or requiring particular clinical setups. Therefore, our methodology can be easily applied to gain parametric insights to complement the existing tools for the diagnosis of G-I dysregulations. We tested the parameter stability and sensitivity for individual subjects, and an empirical relationship between such indexes and curve shapes was spotted. Since different G-I profiles, under the light of our model, are related to different physiological mechanisms, the present method offers a tool for personally-oriented diagnosis and treatment and to better define new health criteria.

16.
Front Mol Biosci ; 7: 13, 2020.
Article in English | MEDLINE | ID: mdl-32118039

ABSTRACT

In highly non-linear datasets, attributes or features do not allow readily finding visual patterns for identifying common underlying behaviors. Therefore, it is not possible to achieve classification or regression using linear or mildly non-linear hyperspace partition functions. Hence, supervised learning models based on the application of most existing algorithms are limited, and their performance metrics are low. Linear transformations of variables, such as principal components analysis, cannot avoid the problem, and even models based on artificial neural networks and deep learning are unable to improve the metrics. Sometimes, even when features allow classification or regression in reported cases, performance metrics of supervised learning algorithms remain unsatisfyingly low. This problem is recurrent in many areas of study as, per example, the clinical, biotechnological, and protein engineering areas, where many of the attributes are correlated in an unknown and very non-linear fashion or are categorical and difficult to relate to a target response variable. In such areas, being able to create predictive models would dramatically impact the quality of their outcomes, generating an immediate added value for both the scientific and general public. In this manuscript, we present RV-Clustering, a library of unsupervised learning algorithms, and a new methodology designed to find optimum partitions within highly non-linear datasets that allow deconvoluting variables and notoriously improving performance metrics in supervised learning classification or regression models. The partitions obtained are statistically cross-validated, ensuring correct representativity and no over-fitting. We have successfully tested RV-Clustering in several highly non-linear datasets with different origins. The approach herein proposed has generated classification and regression models with high-performance metrics, which further supports its ability to generate predictive models for highly non-linear datasets. Advantageously, the method does not require significant human input, which guarantees a higher usability in the biological, biomedical, and protein engineering community with no specific knowledge in the machine learning area.

17.
J Inorg Biochem ; 206: 111016, 2020 05.
Article in English | MEDLINE | ID: mdl-32142941

ABSTRACT

Ferritin is a globular hollow protein that acts as the major iron storage protein across living organisms. The 8 nm-diameter internal cavity of ferritin has been used as a nanoreactor for the synthesis of various metallic nanoparticles different to iron oxides. For this purpose, ferritin is incubated in solution with metallic ions that enter the cavity through its natural channels. Then, these ions are subjected to a reduction step to obtain highly monodisperse metallic nanoparticles, with enhanced stability and biocompatibility provided by the ferritin structure. Potential biomedical applications of ferritin-nanoparticle complex will require the use of human ferritin to provide a safer and low-risk alternative for the delivery of metallic nanoparticles into the body. However, most of the reported protocols for metallic nanoparticles synthesis uses horse spleen ferritin as nanocontainer. Previous studies have acknowledged technical difficulties with recombinant human ferritin during the synthesis of metallic nanoparticles, like protein precipitation, which is translated into low recovery yields. In this study, we tested a novel photochemical reduction method for silver nanoparticle synthesis in human recombinant ferritin and compared it with the traditional chemical reduction method. The results show that photoreduction of silver ions inside ferritin cavity provides a universal method for silver nanoparticle synthesis in both recombinant human ferritin homopolymers (Light and Heavy ferritin). Additionally, we report important parameters that account for the efficiency of the method, such as ferritin recovery yield (~60%) and ferritin­silver nanoparticle yield (34% for H-ferritin and 17% for L-ferritin).


Subject(s)
Apoferritins/chemistry , Metal Nanoparticles/chemistry , Photochemistry , Recombinant Proteins/chemistry , Silver/chemistry , Apoferritins/metabolism , Humans , Recombinant Proteins/metabolism
18.
Front Public Health ; 8: 556689, 2020.
Article in English | MEDLINE | ID: mdl-33415091

ABSTRACT

In the absence of a consensus protocol to slow down the spread of SARS-CoV-2, policymakers need real-time indicators to support decisions in public health matters. The Effective Reproduction Number (R t ) represents the number of secondary infections generated per each case and can be dramatically modified by applying effective interventions. However, current methodologies to calculate R t from data remain somewhat cumbersome, thus raising a barrier between its timely calculation and application by policymakers. In this work, we provide a simple mathematical formulation for obtaining the effective reproduction number in real-time using only and directly daily official case reports, obtained by modifying the equations describing the viral spread. We numerically explore the accuracy and limitations of the proposed methodology, which was demonstrated to provide accurate, timely, and intuitive results. We illustrate the use of our methodology to study the evolution of the pandemic in different iconic countries, and to assess the efficacy and promptness of different public health interventions.


Subject(s)
Basic Reproduction Number , COVID-19/epidemiology , Health Policy , Models, Statistical , Public Health , Humans , SARS-CoV-2
19.
Immunobiology ; 225(1): 151863, 2020 01.
Article in English | MEDLINE | ID: mdl-31732192

ABSTRACT

Microbes have developed mechanisms to resist the host immune defenses and some elicit antitumor immune responses. About 6 million people are infected with Trypanosoma cruzi, the protozoan agent of Chagas' disease, the sixth neglected tropical disease worldwide. Eighty years ago, G. Roskin and N. Klyuyeva proposed that T. cruzi infection mediates an anti-cancer activity. This observation has been reproduced by several other laboratories, but no molecular basis has been proposed. We have shown that the highly pleiotropic chaperone calreticulin (TcCalr, formerly known as TcCRT), translocates from the parasite ER to the exterior, where it mediates infection. Similar to its human counterpart HuCALR (formerly known as HuCRT), TcCalr inhibits C1 in its capacity to initiate the classical pathway of complement activation. We have also proposed that TcCalr inhibits angiogenesis and it is a likely mediator of antitumor effects. We have generated several in silico structural TcCalr models to delimit a peptide (VC-TcCalr) at the TcCalr N-domain. Chemically synthesized VC-TcCalr did bind to C1q and was anti-angiogenic in Gallus gallus chorioallantoic membrane assays. These properties were associated with structural features, as determined in silico. VC-TcCalr, a strong dipole, interacts with charged proteins such as collagen-like tails and scavenger receptors. Comparatively, HuCALR has less polarity and spatial stability, probably due to at least substitutions of Gln for Gly, Arg for Lys, Arg for Asp and Ser for Arg that hinder protein-protein interactions. These differences can explain, at least in part, how TcCalr inhibits the complement activation pathway and has higher efficiency as an antiangiogenic and antitumor agent than HuCALR.


Subject(s)
Angiogenesis Modulating Agents/metabolism , Antineoplastic Agents/metabolism , Calreticulin/metabolism , Chagas Disease/immunology , Complement C1q/metabolism , Protozoan Proteins/metabolism , Trypanosoma cruzi/physiology , Angiogenesis Modulating Agents/chemistry , Animals , Antineoplastic Agents/chemistry , Calreticulin/chemistry , Cells, Cultured , Chagas Disease/parasitology , Chick Embryo , Complement Activation , Host-Parasite Interactions , Humans , Molecular Dynamics Simulation , Molecular Structure , Protein Interaction Domains and Motifs , Protozoan Proteins/chemistry , Sequence Alignment
20.
PLoS Negl Trop Dis ; 13(8): e0007678, 2019 08.
Article in English | MEDLINE | ID: mdl-31469838

ABSTRACT

Wolbachia are alpha-proteobacteria known to infect arthropods, which are of interest for disease control since they have been associated with improved resistance to viral infection. Although several genomes for different strains have been sequenced, there is little knowledge regarding the relationship between this bacterium and their hosts, particularly on their dependency for survival. Motivated by the potential applications on disease control, we developed genome-scale models of four Wolbachia strains known to infect arthropods: wAlbB (Aedes albopictus), wVitA (Nasonia vitripennis), wMel and wMelPop (Drosophila melanogaster). The obtained metabolic reconstructions exhibit a metabolism relying mainly on amino acids for energy production and biomass synthesis. A gap analysis was performed to detect metabolic candidates which could explain the endosymbiotic nature of this bacterium, finding that amino acids, requirements for ubiquinone precursors and provisioning of metabolites such as riboflavin could play a crucial role in this relationship. This work provides a systems biology perspective for studying the relationship of Wolbachia with its host and the development of new approaches for control of the spread of arboviral diseases. This approach, where metabolic gaps are key objects of study instead of just additions to complete a model, could be applied to other endosymbiotic bacteria of interest.


Subject(s)
Host Microbial Interactions , Symbiosis , Wolbachia/growth & development , Wolbachia/metabolism , Aedes/microbiology , Animals , Drosophila melanogaster/microbiology , Hymenoptera/microbiology , Systems Biology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...