Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 248
Filter
1.
Sci Rep ; 13(1): 15718, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37735604

ABSTRACT

Proper disinfection and inactivation of highly pathogenic viruses is an essential component of public health and prevention. Depending on environment, surfaces, and type of contaminant, various methods of disinfection must be both efficient and available. To test both established and novel chemical disinfectants against risk group 4 viruses in our maximum containment facility, we developed a standardized protocol and assessed the chemical inactivation of the two Ebola virus variants Mayinga and Makona suspended in two different biological soil loads. Standard chemical disinfectants ethanol and sodium hypochlorite completely inactivate both Ebola variants after 30 s in suspension at 70% and 0.5% v/v, respectively, concentrations recommended for disinfection by the World Health Organization. Additionally, peracetic acid is also inactivating at 0.2% v/v under the same conditions. Continued vigilance and optimization of current disinfection protocols is extremely important due to the continuous presence of Ebola virus on the African continent and increased zoonotic spillover of novel viral pathogens. Furthermore, to facilitate general pandemic preparedness, the establishment and sharing of standardized protocols is very important as it allows for rapid testing and evaluation of novel pathogens and chemical disinfectants.


Subject(s)
Disinfectants , Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Disinfectants/pharmacology , Hemorrhagic Fever, Ebola/prevention & control , Disinfection , Soil
2.
Cell Genom ; 3(7): 100342, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37492103

ABSTRACT

Single-cell sequencing could help to solve the fundamental challenge of linking millions of cell-type-specific enhancers with their target genes. However, this task is confounded by patterns of gene co-expression in much the same way that genetic correlation due to linkage disequilibrium confounds fine-mapping in genome-wide association studies (GWAS). We developed a non-parametric permutation-based procedure to establish stringent statistical criteria to control the risk of false-positive associations in enhancer-gene association studies (EGAS). We applied our procedure to large-scale transcriptome and epigenome data from multiple tissues and species, including the mouse and human brain, to predict enhancer-gene associations genome wide. We tested the functional validity of our predictions by comparing them with chromatin conformation data and causal enhancer perturbation experiments. Our study shows how controlling for gene co-expression enables robust enhancer-gene linkage using single-cell sequencing data.

3.
bioRxiv ; 2023 May 11.
Article in English | MEDLINE | ID: mdl-37214950

ABSTRACT

Enhancers play a crucial role in regulating gene expression and their functional status can be queried with cell type precision using using single-cell (sc)ATAC-seq. To facilitate analysis of such data, we developed Enhlink, a novel computational approach that leverages single-cell signals to infer linkages between regulatory DNA sequences, such as enhancers and promoters. Enhlink uses an ensemble strategy that integrates cell-level technical covariates to control for batch effects and biological covariates to infer robust condition-specific links and their associated p-values. It can integrate simultaneous gene expression and chromatin accessibility measurements of individual cells profiled by multi-omic experiments for increased specificity. We evaluated Enhlink using simulated and real scATAC-seq data, including those paired with physical enhancer-promoter links enumerated by promoter capture Hi-C and with multi-omic scATAC-/RNA-seq data we generated from the mouse striatum. These examples demonstrated that our method outperforms popular alternative strategies. In conjunction with eQTL analysis, Enhlink revealed a putative super-enhancer regulating key cell type-specific markers of striatal neurons. Taken together, our analyses demonstrate that Enhlink is accurate, powerful, and provides features that can lead to novel biological insights.

4.
Nat Genet ; 55(3): 377-388, 2023 03.
Article in English | MEDLINE | ID: mdl-36823318

ABSTRACT

Identification of therapeutic targets from genome-wide association studies (GWAS) requires insights into downstream functional consequences. We harmonized 8,613 RNA-sequencing samples from 14 brain datasets to create the MetaBrain resource and performed cis- and trans-expression quantitative trait locus (eQTL) meta-analyses in multiple brain region- and ancestry-specific datasets (n ≤ 2,759). Many of the 16,169 cortex cis-eQTLs were tissue-dependent when compared with blood cis-eQTLs. We inferred brain cell types for 3,549 cis-eQTLs by interaction analysis. We prioritized 186 cis-eQTLs for 31 brain-related traits using Mendelian randomization and co-localization including 40 cis-eQTLs with an inferred cell type, such as a neuron-specific cis-eQTL (CYP24A1) for multiple sclerosis. We further describe 737 trans-eQTLs for 526 unique variants and 108 unique genes. We used brain-specific gene-co-regulation networks to link GWAS loci and prioritize additional genes for five central nervous system diseases. This study represents a valuable resource for post-GWAS research on central nervous system diseases.


Subject(s)
Brain Diseases , Quantitative Trait Loci , Humans , Quantitative Trait Loci/genetics , Genome-Wide Association Study , Gene Regulatory Networks/genetics , Brain , Phenotype , Brain Diseases/genetics , Polymorphism, Single Nucleotide/genetics
5.
S Afr J Sports Med ; 35(1): v35i1a15144, 2023.
Article in English | MEDLINE | ID: mdl-38249757

ABSTRACT

Background: Despite differences between left- and right-handed athletes in other sports, minimal evidence exists regarding biomechanical similarities and differences between left- and right-handed cricket fast bowlers performing an equivalent task. Objectives: This study aimed to compare the kinematics between left and right-handed fast bowlers performing an equivalent task (i.e. bowling 'over the wicket' to a batter of the same handedness as the bowler). Methods: Full body, three-dimensional kinematic data for six left-handed and 20 right-handed adolescent, male, fast bowlers were collected using the Xsens inertial measurement system. Time-normalised joint and segment angle time histories from back foot contact to follow-through ground contacts were compared between groups via statistical parametric mapping. Whole movement and subphase durations were also compared. Results: Left-handed players displayed significantly more trunk flexion from 49%-56% of the total movement (ball release occurred at 54%; p = 0.037) and had shorter back foot contact durations on average (0.153 vs 0.177 s; p = 0.036) compared to right-handed players. Conclusion: Left- and right-handed bowlers displayed similar sagittal plane kinematics but appeared to use non-sagittal plane movements differently around the time of ball release. The kinematic differences identified in this study can inform future research investigating the effect of hand dominance on bowling performance and injury risk.

6.
Microbiome ; 10(1): 131, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35996183

ABSTRACT

BACKGROUND: Top-soil microbiomes make a vital contribution to the Earth's ecology and harbor an extraordinarily high biodiversity. They are also key players in many ecosystem services, particularly in arid regions of the globe such as the African continent. While several recent studies have documented patterns in global soil microbial ecology, these are largely biased towards widely studied regions and rely on models to interpolate the microbial diversity of other regions where there is low data coverage. This is the case for sub-Saharan Africa, where the number of regional microbial studies is very low in comparison to other continents. RESULTS: The aim of this study was to conduct an extensive biogeographical survey of sub-Saharan Africa's top-soil microbiomes, with a specific focus on investigating the environmental drivers of microbial ecology across the region. In this study, we sampled 810 sample sites across 9 sub-Saharan African countries and used taxonomic barcoding to profile the microbial ecology of these regions. Our results showed that the sub-Saharan nations included in the study harbor qualitatively distinguishable soil microbiomes. In addition, using soil chemistry and climatic data extracted from the same sites, we demonstrated that the top-soil microbiome is shaped by a broad range of environmental factors, most notably pH, precipitation, and temperature. Through the use of structural equation modeling, we also developed a model to predict how soil microbial biodiversity in sub-Saharan Africa might be affected by future climate change scenarios. This model predicted that the soil microbial biodiversity of countries such as Kenya will be negatively affected by increased temperatures and decreased precipitation, while the fungal biodiversity of Benin will benefit from the increase in annual precipitation. CONCLUSION: This study represents the most extensive biogeographical survey of sub-Saharan top-soil microbiomes to date. Importantly, this study has allowed us to identify countries in sub-Saharan Africa that might be particularly vulnerable to losses in soil microbial ecology and productivity due to climate change. Considering the reliance of many economies in the region on rain-fed agriculture, this study provides crucial information to support conservation efforts in the countries that will be most heavily impacted by climate change. Video Abstract.


Subject(s)
Microbiota , Soil , Biodiversity , Desert Climate , Ecosystem , Microbiota/genetics , Soil/chemistry , Soil Microbiology
7.
Biomed Pharmacother ; 150: 113058, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35658229

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic with unprecedented economic and societal impact. Currently, several vaccines are available and multitudes of antiviral treatments have been proposed and tested. Although many of the vaccines show clinical efficacy, they are not equally accessible worldwide. Additionally, due to the continuous emergence of new variants and generally short duration of immunity, the development of effective antiviral treatments remains of the utmost importance. Since the emergence of SARS-CoV-2, substantial efforts have been undertaken to repurpose existing drugs for accelerated clinical testing and emergency use authorizations. However, drug-repurposing studies using cellular assays often identify hits that later prove ineffective clinically, highlighting the need for more complex screening models. To this end, we evaluated the activity of single compounds that have either been tested clinically or already undergone extensive preclinical profiling, using a standardized in vitro model of human nasal epithelium. Furthermore, we also evaluated drug combinations based on a sub-maximal concentration of molnupiravir. We report the antiviral activity of 95 single compounds and 30 combinations. We show that only a few single agents are highly effective in inhibiting SARS-CoV-2 replication while selected drug combinations containing 10 µM molnupiravir boosted antiviral activity compared to single compound treatment. These data indicate that molnupiravir-based combinations are worthy of further consideration as potential treatment strategies against coronavirus disease 2019 (COVID-19).


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cytidine/analogs & derivatives , Humans , Hydroxylamines , Nasal Mucosa , SARS-CoV-2
8.
Front Genet ; 13: 833190, 2022.
Article in English | MEDLINE | ID: mdl-35419030

ABSTRACT

Humans have a great diversity in phenotypes, influenced by genetic, environmental, nutritional, cultural, and social factors. Understanding the historical trends of physiological traits can shed light on human physiology, as well as elucidate the factors that influence human diseases. Here we built genome-wide polygenic scores for heritable traits, including height, body mass index, lipoprotein concentrations, cardiovascular disease, and intelligence, using summary statistics of genome-wide association studies in Europeans. Subsequently, we applied these scores to the genomes of ancient European populations. Our results revealed that after the Neolithic, European populations experienced an increase in height and intelligence scores, decreased their skin pigmentation, while the risk for coronary artery disease increased through a genetic trajectory favoring low HDL concentrations. These results are a reflection of the continuous evolutionary processes in humans and highlight the impact that the Neolithic revolution had on our lifestyle and health.

10.
Eur J Immunol ; 52(3): 431-446, 2022 03.
Article in English | MEDLINE | ID: mdl-34821391

ABSTRACT

Innate immune cells are able to build memory characteristics via a process termed "trained immunity." Host factors that influence the magnitude of the individual trained immunity response remain largely unknown. Using an integrative genomics approach, our study aimed to prioritize and understand the role of specific genes in trained immunity responses. In vitro-induced trained immunity responses were assessed in two independent population-based cohorts of healthy individuals, the 300 Bacillus Calmette-Guérin (300BCG; n = 267) and 200 Functional Genomics (200FG; n = 110) cohorts from the Human Functional Genomics Project. Genetic loci that influence cytokine responses upon trained immunity were identified by conducting a meta-analysis of QTLs identified in the 300BCG and 200FG cohorts. From the identified QTL loci, we functionally validated the role of PI3K-Akt signaling pathway and two genes that belong to the family of Siglec receptors (Siglec-5 and Siglec-14). Furthermore, we identified the H3K9 histone demethylases of the KDM4 family as major regulators of trained immunity responses. These data pinpoint an important role of metabolic and epigenetic processes in the regulation of trained immunity responses, and these findings may open new avenues for vaccine design and therapeutic interventions.


Subject(s)
BCG Vaccine , Immunity, Innate , Genomics , Humans , Phosphatidylinositol 3-Kinases/genetics , Sialic Acid Binding Immunoglobulin-like Lectins
11.
J Neurophysiol ; 127(1): 279-289, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34936515

ABSTRACT

Aberrant brain oscillations are a hallmark of Parkinson's disease (PD) pathophysiology and may be related to both motor and nonmotor symptoms. Mild cognitive impairment (MCI) affects many people with PD even at the time of diagnosis and conversion risks to PD dementia (PDD) are very high. Unfortunately, pharmacotherapies are not addressing cognitive symptoms in PD. Profiling PD cognitive phenotypes (e.g., MCI, PDD, etc.) may therefore help inform future treatments. Neurophysiological methods, such as magnetoencephalography (MEG), offer the advantage of observing oscillatory patterns, whose regional and temporal profiles may elucidate how cognitive changes relate to neural mechanisms. We conducted a resting-state MEG cross-sectional study of 89 persons with PD stratified into three phenotypic groups: normal cognition, MCI, and PDD, to identify brain regions and frequencies most associated with each cognitive profile. In addition, a neuropsychological battery was administered to assess each domain of cognition. Our data showed higher power in lower frequency bands (delta and theta) observed along with more severe cognitive impairment and associated with memory, language, attention, and global cognition. Of the total 119 brain parcels assessed during source analysis, widespread group differences were found in the beta band, with significant changes mostly occurring between the normal cognition and MCI groups. Moreover, bilateral frontal and left-hemispheric regions were particularly affected in the other frequencies as cognitive decline becomes more pronounced. Our results suggest that MCI and PDD may be qualitatively distinct cognitive phenotypes, and most dramatic changes seem to have happened when the PD brain shows mild cognitive decline.NEW & NOTEWORTHY Can we better stage cognitive decline in patients with Parkinson's disease (PD)? Here, we provide evidence that mild cognitive impairment, rather than being simply a milder form of dementia, may be a qualitatively distinct phase in its development. We suggest that the most dramatic neurophysiological changes may occur during the time the PD brain transitions from normal cognition to MCI, then compensatory changes further occur as the brain "switches" to a dementia state.


Subject(s)
Brain Waves/physiology , Cognitive Dysfunction/physiopathology , Connectome , Disease Progression , Magnetoencephalography , Parkinson Disease/physiopathology , Aged , Aged, 80 and over , Cognitive Dysfunction/etiology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Parkinson Disease/complications
12.
S Afr J Sports Med ; 34(1): v34i1a12869, 2022.
Article in English | MEDLINE | ID: mdl-36815915

ABSTRACT

Background: Rugby union is a physically demanding collision sport that requires optimal neuromuscular function for maximal power output, with mechanical power an integral component of performance. Peak power (Pp) and relative Pp are parameters of neuromuscular function commonly assessed through the countermovement jump (CMJ) as a measure of fatigue. The Wattbike cycle ergometer test (CET) is a non-load bearing method of evaluating lower limb power. The cost-effective CET could therefore offer a viable alternative to the CMJ. Objectives: This study aimed to determine the concurrent validity of the CMJ and CET. Methods: Thirty-eight professional rugby union players performed twelve CMJs on a force platform with four loads (bodyweight: BW-CMJ; 20kg: 20-CMJ; 40kg: 40-CMJ and 60kg: 60-CMJ) and a six second peak power (6PPO) CET assessment on a Wattbike ergometer. Results: CMJ power outputs were [BW-CMJ: Pp - 3101±648 W; 20-CMJ: Pp - 2724±513 W; 40-CMJ: Pp - 2490±496 W; 60-CMJ: Pp - 2238±366 W] and CET [Pp - 1310±161 W]. None of the CMJ-Pp values showed relationships with any CET power variables. Large (r = 0.51-0.63; p = 0.000 - 0.001) relationships were found to be between relative CMJ and relative CET power outputs. Bland-Altman plots, which were used to determine the level of agreement between the two assessments, showed the agreement between the tests was poor. Conclusion: Though positive relationships existed between relative CMJ and relative CET power variables, analyses of the level of agreement in the Bland-Altman plots suggest that the two power assessment methods are not interchangeable measures of power.

13.
S Afr J Sports Med ; 34(1): v34i1a12521, 2022.
Article in English | MEDLINE | ID: mdl-36815924

ABSTRACT

Background: The trunk connects the upper and lower limbs and transfers energy during movement. Exploring the role of the trunk muscles in bowling performance affords us the opportunity to uncover potential mechanisms to improve bowling performance. Objectives: To investigate the association between bowling performance and trunk muscle stability, strength-endurance and thickness in adolescent pace bowlers. Methods: Adolescent pace bowlers participated in this cross-sectional study. Trunk muscle stability was measured using Sahrmann's Stability Scale, strength-endurance using the Bourbon Trunk Muscle Strength Test and thickness of the abdominal wall and lumbar multifidus muscles using ultrasound imaging. Results: Forty-six pace bowlers with a mean age of 15.9 ±1.2 years participated. The average ball release speed was 109.2±11.8 km.h-1. This measurement was higher in level four of stability than in level two (mean difference 22.2 ± SD 6.8 km.h-1; p= .018). No link between ball release speed and strength-endurance could be found. Multiple correlations of moderate strength (r > 0.4) exist between ball release speed and absolute trunk muscle thickness with height and weight as confounding factors. The relationship between accuracy and the trunk muscle variables investigated in this study is weak. Conclusion: Bowlers with better trunk muscle stability bowled faster than those with a lower level of trunk stability, irrespective of their age, height and weight. Trunk muscle thickness correlated with ball release speed; however, confounding factors such as height and weight play a role and therefore, findings need to be interpreted with caution.

14.
Nat Cardiovasc Res ; 1(9): 830-843, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36817700

ABSTRACT

The heart, a vital organ which is first to develop, has adapted its size, structure and function in order to accommodate the circulatory demands for a broad range of animals. Although heart development is controlled by a relatively conserved network of transcriptional/chromatin regulators, how the human heart has evolved species-specific features to maintain adequate cardiac output and function remains to be defined. Here, we show through comparative epigenomic analysis the identification of enhancers and promoters that have gained activity in humans during cardiogenesis. These cis-regulatory elements (CREs) are associated with genes involved in heart development and function, and may account for species-specific differences between human and mouse hearts. Supporting these findings, genetic variants that are associated with human cardiac phenotypic/disease traits, particularly those differing between human and mouse, are enriched in human-gained CREs. During early stages of human cardiogenesis, these CREs are also gained within genomic loci of transcriptional regulators, potentially expanding their role in human heart development. In particular, we discovered that gained enhancers in the locus of the early human developmental regulator ZIC3 are selectively accessible within a subpopulation of mesoderm cells which exhibits cardiogenic potential, thus possibly extending the function of ZIC3 beyond its conserved left-right asymmetry role. Genetic deletion of these enhancers identified a human gained enhancer that was required for not only ZIC3 and early cardiac gene expression at the mesoderm stage but also cardiomyocyte differentiation. Overall, our results illuminate how human gained CREs may contribute to human-specific cardiac attributes, and provide insight into how transcriptional regulators may gain cardiac developmental roles through the evolutionary acquisition of enhancers.

15.
Nat Genet ; 53(12): 1636-1648, 2021 12.
Article in English | MEDLINE | ID: mdl-34873335

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Genome-Wide Association Study , Mutation , Neurons/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Brain/metabolism , Cholesterol/blood , Disease Progression , Female , Glutamine/metabolism , Humans , Male , Mendelian Randomization Analysis , Microsatellite Repeats , Neurodegenerative Diseases/genetics , Quantitative Trait Loci , RNA-Seq , Risk Factors
16.
Cell ; 184(24): 5985-6001.e19, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34774128

ABSTRACT

Current catalogs of regulatory sequences in the human genome are still incomplete and lack cell type resolution. To profile the activity of gene regulatory elements in diverse cell types and tissues in the human body, we applied single-cell chromatin accessibility assays to 30 adult human tissue types from multiple donors. We integrated these datasets with previous single-cell chromatin accessibility data from 15 fetal tissue types to reveal the status of open chromatin for ∼1.2 million candidate cis-regulatory elements (cCREs) in 222 distinct cell types comprised of >1.3 million nuclei. We used these chromatin accessibility maps to delineate cell-type-specificity of fetal and adult human cCREs and to systematically interpret the noncoding variants associated with complex human traits and diseases. This rich resource provides a foundation for the analysis of gene regulatory programs in human cell types across tissues, life stages, and organ systems.


Subject(s)
Chromatin/metabolism , Genome, Human , Single-Cell Analysis , Adult , Cluster Analysis , Fetus/metabolism , Genetic Variation , Genome-Wide Association Study , Humans , Organ Specificity , Phylogeny , Regulatory Sequences, Nucleic Acid/genetics , Risk Factors
17.
Nature ; 598(7879): 120-128, 2021 10.
Article in English | MEDLINE | ID: mdl-34616061

ABSTRACT

Mammalian brain cells show remarkable diversity in gene expression, anatomy and function, yet the regulatory DNA landscape underlying this extensive heterogeneity is poorly understood. Here we carry out a comprehensive assessment of the epigenomes of mouse brain cell types by applying single-nucleus DNA methylation sequencing1,2 to profile 103,982 nuclei (including 95,815 neurons and 8,167 non-neuronal cells) from 45 regions of the mouse cortex, hippocampus, striatum, pallidum and olfactory areas. We identified 161 cell clusters with distinct spatial locations and projection targets. We constructed taxonomies of these epigenetic types, annotated with signature genes, regulatory elements and transcription factors. These features indicate the potential regulatory landscape supporting the assignment of putative cell types and reveal repetitive usage of regulators in excitatory and inhibitory cells for determining subtypes. The DNA methylation landscape of excitatory neurons in the cortex and hippocampus varied continuously along spatial gradients. Using this deep dataset, we constructed an artificial neural network model that precisely predicts single neuron cell-type identity and brain area spatial location. Integration of high-resolution DNA methylomes with single-nucleus chromatin accessibility data3 enabled prediction of high-confidence enhancer-gene interactions for all identified cell types, which were subsequently validated by cell-type-specific chromatin conformation capture experiments4. By combining multi-omic datasets (DNA methylation, chromatin contacts, and open chromatin) from single nuclei and annotating the regulatory genome of hundreds of cell types in the mouse brain, our DNA methylation atlas establishes the epigenetic basis for neuronal diversity and spatial organization throughout the mouse cerebrum.


Subject(s)
Brain/cytology , DNA Methylation , Epigenome , Epigenomics , Neurons/classification , Neurons/metabolism , Single-Cell Analysis , Animals , Atlases as Topic , Brain/metabolism , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Cytosine/chemistry , Cytosine/metabolism , Datasets as Topic , Dentate Gyrus/cytology , Enhancer Elements, Genetic/genetics , Gene Expression Profiling , Hippocampus/cytology , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Biological , Neural Pathways , Neurons/cytology
18.
Nature ; 598(7879): 129-136, 2021 10.
Article in English | MEDLINE | ID: mdl-34616068

ABSTRACT

The mammalian cerebrum performs high-level sensory perception, motor control and cognitive functions through highly specialized cortical and subcortical structures1. Recent surveys of mouse and human brains with single-cell transcriptomics2-6 and high-throughput imaging technologies7,8 have uncovered hundreds of neural cell types distributed in different brain regions, but the transcriptional regulatory programs that are responsible for the unique identity and function of each cell type remain unknown. Here we probe the accessible chromatin in more than 800,000 individual nuclei from 45 regions that span the adult mouse isocortex, olfactory bulb, hippocampus and cerebral nuclei, and use the resulting data to map the state of 491,818 candidate cis-regulatory DNA elements in 160 distinct cell types. We find high specificity of spatial distribution for not only excitatory neurons, but also most classes of inhibitory neurons and a subset of glial cell types. We characterize the gene regulatory sequences associated with the regional specificity within these cell types. We further link a considerable fraction of the cis-regulatory elements to putative target genes expressed in diverse cerebral cell types and predict transcriptional regulators that are involved in a broad spectrum of molecular and cellular pathways in different neuronal and glial cell populations. Our results provide a foundation for comprehensive analysis of gene regulatory programs of the mammalian brain and assist in the interpretation of noncoding risk variants associated with various neurological diseases and traits in humans.


Subject(s)
Cerebrum/cytology , Cerebrum/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Animals , Atlases as Topic , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , Gene Expression Regulation , Genetic Predisposition to Disease/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Nervous System Diseases/genetics , Neuroglia/classification , Neuroglia/metabolism , Neurons/classification , Neurons/metabolism , Sequence Analysis, DNA , Single-Cell Analysis
19.
Sci Rep ; 11(1): 19704, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34611218

ABSTRACT

Graph theory-based approaches are efficient tools for detecting clustering and group-wise differences in high-dimensional data across a wide range of fields, such as gene expression analysis and neural connectivity. Here, we examine data from a cross-sectional, resting-state magnetoencephalography study of 89 Parkinson's disease patients, and use minimum-spanning tree (MST) methods to relate severity of Parkinsonian cognitive impairment to neural connectivity changes. In particular, we implement the two-sample multivariate-runs test of Friedman and Rafsky (Ann Stat 7(4):697-717, 1979) and find it to be a powerful paradigm for distinguishing highly significant deviations from the null distribution in high-dimensional data. We also generalize this test for use with greater than two classes, and show its ability to localize significance to particular sub-classes. We observe multiple indications of altered connectivity in Parkinsonian dementia that may be of future use in diagnosis and prediction.


Subject(s)
Brain Mapping , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Magnetoencephalography , Models, Biological , Parkinsonian Disorders/complications , Aged , Algorithms , Brain Mapping/methods , Computational Biology/methods , Data Analysis , Female , Humans , Magnetoencephalography/methods , Male
20.
Elife ; 102021 09 07.
Article in English | MEDLINE | ID: mdl-34488939

ABSTRACT

As our ancestors migrated throughout different continents, natural selection increased the presence of alleles advantageous in the new environments. Heritable variations that alter the susceptibility to diseases vary with the historical period, the virulence of the infections, and their geographical spread. In this study we built polygenic scores for heritable traits that influence the genetic adaptation in the production of cytokines and immune-mediated disorders, including infectious, inflammatory, and autoimmune diseases, and applied them to the genomes of several ancient European populations. We observed that the advent of the Neolithic was a turning point for immune-mediated traits in Europeans, favoring those alleles linked with the development of tolerance against intracellular pathogens and promoting inflammatory responses against extracellular microbes. These evolutionary patterns are also associated with an increased presence of traits related to inflammatory and auto-immune diseases.


Subject(s)
Cytokines/genetics , Cytokines/metabolism , Evolution, Molecular , Immune System , Adaptation, Physiological , Alleles , Autoimmune Diseases , Gene Expression , Inflammation , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...