Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 294(32): 11980-11991, 2019 08 09.
Article in English | MEDLINE | ID: mdl-31160323

ABSTRACT

The reversible adenine phosphoribosyltransferase enzyme (APRT) is essential for purine homeostasis in prokaryotes and eukaryotes. In humans, APRT (hAPRT) is the only enzyme known to produce AMP in cells from dietary adenine. APRT can also process adenine analogs, which are involved in plant development or neuronal homeostasis. However, the molecular mechanism underlying substrate specificity of APRT and catalysis in both directions of the reaction remains poorly understood. Here we present the crystal structures of hAPRT complexed to three cellular nucleotide analogs (hypoxanthine, IMP, and GMP) that we compare with the phosphate-bound enzyme. We established that binding to hAPRT is substrate shape-specific in the forward reaction, whereas it is base-specific in the reverse reaction. Furthermore, a quantum mechanics/molecular mechanics (QM/MM) analysis suggests that the forward reaction is mainly a nucleophilic substitution of type 2 (SN2) with a mix of SN1-type molecular mechanism. Based on our structural analysis, a magnesium-assisted SN2-type mechanism would be involved in the reverse reaction. These results provide a framework for understanding the molecular mechanism and substrate discrimination in both directions by APRTs. This knowledge can play an instrumental role in the design of inhibitors, such as antiparasitic agents, or adenine-based substrates.


Subject(s)
Adenine Phosphoribosyltransferase/metabolism , Adenine/chemistry , Adenine/metabolism , Adenine Phosphoribosyltransferase/chemistry , Biocatalysis , Crystallography, X-Ray , Humans , Kinetics , Models, Molecular , Protein Structure, Tertiary , Quantum Theory , Substrate Specificity
2.
Cell Chem Biol ; 25(6): 666-676.e4, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29576532

ABSTRACT

Phosphoribosyltransferases catalyze the displacement of a PRPP α-1'-pyrophosphate to a nitrogen-containing nucleobase. How they control the balance of substrates/products binding and activities is poorly understood. Here, we investigated the human adenine phosphoribosyltransferase (hAPRT) that produces AMP in the purine salvage pathway. We show that a single oxygen atom from the Tyr105 side chain is responsible for selecting the active conformation of the 12 amino acid long catalytic loop. Using in vitro, cellular, and in crystallo approaches, we demonstrated that Tyr105 is key for the fine-tuning of the kinetic activity efficiencies of the forward and reverse reactions. Together, our results reveal an evolutionary pressure on the strictly conserved Tyr105 and on the dynamic motion of the flexible loop in phosphoribosyltransferases that is essential for purine biosynthesis in cells. These data also provide the framework for designing novel adenine derivatives that could modulate, through hAPRT, diseases-involved cellular pathways.


Subject(s)
Adenine Phosphoribosyltransferase/metabolism , Adenine Phosphoribosyltransferase/chemistry , Adenine Phosphoribosyltransferase/isolation & purification , Crystallography, X-Ray , Humans , Models, Molecular , Protein Conformation
3.
Cell ; 161(4): 817-32, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25957687

ABSTRACT

Rod-derived cone viability factor (RdCVF) is an inactive thioredoxin secreted by rod photoreceptors that protects cones from degeneration. Because the secondary loss of cones in retinitis pigmentosa (RP) leads to blindness, the administration of RdCVF is a promising therapy for this untreatable neurodegenerative disease. Here, we investigated the mechanism underlying the protective role of RdCVF in RP. We show that RdCVF acts through binding to Basigin-1 (BSG1), a transmembrane protein expressed specifically by photoreceptors. BSG1 binds to the glucose transporter GLUT1, resulting in increased glucose entry into cones. Increased glucose promotes cone survival by stimulation of aerobic glycolysis. Moreover, a missense mutation of RdCVF results in its inability to bind to BSG1, stimulate glucose uptake, and prevent secondary cone death in a model of RP. Our data uncover an entirely novel mechanism of neuroprotection through the stimulation of glucose metabolism.


Subject(s)
Eye Proteins/metabolism , Glycolysis , Thioredoxins/metabolism , Alkaline Phosphatase/metabolism , Animals , Basigin/genetics , Basigin/metabolism , Eye Proteins/genetics , Glucose/metabolism , Glucose Transporter Type 1/metabolism , Humans , Mice , Mutation, Missense , Retina/metabolism , Retinal Cone Photoreceptor Cells/cytology , Retinal Cone Photoreceptor Cells/metabolism , Retinitis Pigmentosa/metabolism , Thioredoxins/genetics
4.
Mol Genet Metab ; 110(3): 268-74, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24075303

ABSTRACT

We describe a family of seven boys affected by Lesch-Nyhan disease with various phenotypes. Further investigations revealed a mutation c.203T>C in the gene encoding HGprt of all members, with substitution of leucine to proline at residue 68 (p.Leu68Pro). Thus patients from this family display a wide variety of symptoms although sharing the same mutation. Mutant HGprt enzyme was prepared by site-directed mutagenesis and the kinetics of the enzyme revealed that the catalytic activity of the mutant was reduced, in association with marked reductions in the affinity towards phosphoribosylpyrophosphate (PRPP). Its Km for PRPP was increased 215-fold with hypoxanthine as substrate and 40-fold with guanine as substrate with associated reduced catalytic potential. Molecular modeling confirmed that the most prominent defect was the dramatically reduced affinity towards PRPP. Our studies suggest that the p.Leu68Pro mutation has a strong impact on PRPP binding and on stability of the active conformation. This suggests that factors other than HGprt activity per se may influence the phenotype of Lesch-Nyhan patients.


Subject(s)
Hypoxanthine Phosphoribosyltransferase/deficiency , Hypoxanthine Phosphoribosyltransferase/genetics , Phenotype , Adolescent , Adult , Amino Acid Substitution , Child , Codon , Enzyme Activation , Humans , Hypoxanthine Phosphoribosyltransferase/chemistry , Kinetics , Lesch-Nyhan Syndrome/diagnosis , Lesch-Nyhan Syndrome/genetics , Lesch-Nyhan Syndrome/metabolism , Male , Middle Aged , Models, Molecular , Mutation , Pedigree , Protein Binding , Protein Conformation , Protein Stability , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL