Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Breast Cancer Res ; 23(1): 83, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34353349

ABSTRACT

BACKGROUND: The heterogeneity of the breast tumor microenvironment (TME) may contribute to the lack of durable responses to immune checkpoint blockade (ICB); however, mouse models to test this are currently lacking. Proper selection and use of preclinical models are necessary for rigorous, preclinical studies to rapidly move laboratory findings into the clinic. METHODS: Three versions of a common syngeneic model derived from the MMTV-PyMT autochthonous model were generated by inoculating 1E6, 1E5, or 1E4 cells derived from the MMTV-PyMT mouse into wildtype recipient mice. To elucidate how tumor latency and TME heterogeneity contribute to ICB resistance, comprehensive characterization of the TME using quantitative flow-cytometry and RNA expression analysis (NanoString) was performed. Subsequently, response to ICB was tested. These procedures were repeated using the EMT6 breast cancer model. RESULTS: The 3 syngeneic versions of the MMTV-PyMT model had vastly different TMEs that correlated to ICB response. The number of cells used to generate syngeneic tumors significantly influenced tumor latency, infiltrating leukocyte populations, and response to ICB. These results were confirmed using the EMT6 breast cancer model. Compared to the MMTV-PyMT autochthonous model, all 3 MMTV-PyMT syngeneic models had significantly more tumor-infiltrating lymphocytes (TILs; CD3+, CD4+, and CD8+) and higher proportions of PD-L1-positive myeloid cells, whereas the MMTV-PyMT autochthonous model had the highest frequency of myeloid cells out of total leukocytes. Increased TILs correlated with response to anti-PD-L1 and anti-CTLA-4 therapy, but PD-L1expression on tumor cells or PD-1 expression of T cells did not. CONCLUSIONS: These studies reveal that tumor cell number correlates with tumor latency, TME, and response to ICB. ICB-sensitive and resistant syngeneic breast cancer models were identified, in which the 1E4 syngeneic model was most resistant to ICB. Given the lack of benefit from ICB in breast cancer, identifying robust murine models presented here provides the opportunity to further interrogate the TME for breast cancer treatment and provide novel insights into therapeutic combinations to overcome ICB resistance.


Subject(s)
Immunotherapy , Mammary Neoplasms, Experimental/immunology , Mammary Neoplasms, Experimental/therapy , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm/immunology , Female , Immune Checkpoint Inhibitors/therapeutic use , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Transgenic , Myeloid Cells/immunology , Neoplasm Transplantation , T-Lymphocytes/immunology , Transcriptome/immunology , Transplantation, Isogeneic , Tumor Microenvironment/immunology
2.
Front Immunol ; 12: 643771, 2021.
Article in English | MEDLINE | ID: mdl-33968034

ABSTRACT

Macrophages are crucial innate immune cells that maintain tissue homeostasis and defend against pathogens; however, their infiltration into tumors has been associated with adverse outcomes. Tumor-associated macrophages (TAMs) represent a significant component of the inflammatory infiltrate in breast tumors, and extensive infiltration of TAMs has been linked to poor prognosis in breast cancer. Here, we detail how TAMs impede a productive tumor immunity cycle by limiting antigen presentation and reducing activation of cytotoxic T lymphocytes (CTLs) while simultaneously supporting tumor cell survival, angiogenesis, and metastasis. There is an urgent need to overcome TAM-mediated immune suppression for durable anti-tumor immunity in breast cancer. To date, failure to fully characterize TAM biology and classify multiple subsets has hindered advancement in therapeutic targeting. In this regard, the complexity of TAMs has recently taken center stage owing to their subset diversity and tightly regulated molecular and metabolic phenotypes. In this review, we reveal major gaps in our knowledge of the functional and phenotypic characterization of TAM subsets associated with breast cancer, before and after treatment. Future work to characterize TAM subsets, location, and crosstalk with neighboring cells will be critical to counteract TAM pro-tumor functions and to identify novel TAM-modulating strategies and combinations that are likely to enhance current therapies and overcome chemo- and immuno-therapy resistance.


Subject(s)
Breast Neoplasms/blood supply , Breast Neoplasms/immunology , Immune Tolerance , Macrophages/immunology , Neovascularization, Pathologic/immunology , Tumor Microenvironment/immunology , Breast Neoplasms/pathology , Female , Humans , Macrophages/pathology , Neoplasm Metastasis , Neovascularization, Pathologic/pathology
3.
Nat Cancer ; 2(1): 66-82, 2021 01.
Article in English | MEDLINE | ID: mdl-33738458

ABSTRACT

Despite objective responses to PARP inhibition and improvements in progression-free survival compared to standard chemotherapy in patients with BRCA-associated triple-negative breast cancer (TNBC), benefits are transitory. Using high dimensional single-cell profiling of human TNBC, here we demonstrate that macrophages are the predominant infiltrating immune cell type in BRCA-associated TNBC. Through multi-omics profiling we show that PARP inhibitors enhance both anti- and pro-tumor features of macrophages through glucose and lipid metabolic reprogramming driven by the sterol regulatory element-binding protein 1 (SREBP-1) pathway. Combined PARP inhibitor therapy with CSF-1R blocking antibodies significantly enhanced innate and adaptive anti-tumor immunity and extends survival in BRCA-deficient tumors in vivo and is mediated by CD8+ T-cells. Collectively, our results uncover macrophage-mediated immune suppression as a liability of PARP inhibitor treatment and demonstrate combined PARP inhibition and macrophage targeting therapy induces a durable reprogramming of the tumor microenvironment, thus constituting a promising therapeutic strategy for TNBC.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors , Triple Negative Breast Neoplasms , BRCA1 Protein/genetics , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Humans , Macrophages , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...