Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Neuro Oncol ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507464

ABSTRACT

BACKGROUND: Glioblastoma (GBM) commonly displays epidermal growth factor receptor (EGFR) alterations (mainly amplification and EGFRvIII) and TAT-Cx43266-283 is a Src-inhibitory peptide with antitumor properties in preclinical GBM models. Given the link between EGFR and Src, the aim of this study was to explore the role of EGFR in the antitumor effects of TAT-Cx43266-283. METHODS: The effect of TAT-Cx43266-283, temozolomide (TMZ) and erlotinib (EGFR inhibitor) was studied in patient-derived GBM stem cells (GSCs) and murine neural stem cells (NSCs) with and without EGFR alterations, in vitro and in vivo. EGFR alterations were analyzed by Western blot (WB) and Fluorescence In Situ Hybridization (FISH) in these cells, and compared with Src activity and survival in GBM samples from TCGA. RESULTS: The effect of TAT-Cx43266-283 correlated with EGFR alterations in a set of patient-derived GSCs and was stronger than that exerted by TMZ and erlotinib. In fact, TAT-Cx43266-283 only affected NSCs with EGFR alterations, but not healthy NSCs. EGFR alterations correlated with Src activity and poor survival in GBM patients. Finally, tumors generated from NSCs with EGFR alterations, showed a decrease in growth, invasiveness and vascularization after treatment with TAT-Cx43266-283, which enhanced the survival of immunocompetent mice. CONCLUSION: Clinically relevant EGFR alterations are predictors of TAT-Cx43266-283 response and part of its mechanism of action, even in TMZ- and erlotinib-resistant GSCs. TAT-Cx43266-283 targets NSCs with GBM-driver mutations, including EGFR alterations, in an immunocompetent GBM model in vivo, suggesting a promising effect on GBM recurrence. Together, this study represents an important step towards the clinical application of TAT-Cx43266-283.

2.
Front Med (Lausanne) ; 9: 871903, 2022.
Article in English | MEDLINE | ID: mdl-35665360

ABSTRACT

Hereditary Hemorrhagic Telangiectasia (HHT) is an autosomal-dominant genetic disorder involving defects in two predominant genes known as endoglin (ENG; HHT-1) and activin receptor-like kinase 1 (ACVRL1/ALK1; HHT-2). It is characterized by mucocutaneous telangiectases that, due to their fragility, frequently break causing recurrent epistaxis and gastrointestinal bleeding. Because of the severity of hemorrhages, the study of the hemostasis involved in these vascular ruptures is critical to find therapies for this disease. Our results demonstrate that HHT patients with high bleeding, as determined by a high Epistaxis Severity Score (ESS), do not have prolonged clotting times or alterations in clotting factors. Considering that coagulation is only one of the processes involved in hemostasis, the main objective of this study was to investigate the overall mechanisms of hemostasis in HHT-1 (Eng +/-) and HHT-2 (Alk1 +/-) mouse models, which do not show HHT vascular phenotypes in the meaning of spontaneous bleeding. In Eng +/- mice, the results of in vivo and in vitro assays suggest deficient platelet-endothelium interactions that impair a robust and stable thrombus formation. Consequently, the thrombus could be torn off and dragged by the mechanical force exerted by the bloodstream, leading to the reappearance of hemorrhages. In Alk1 +/- mice, an overactivation of the fibrinolysis system was observed. These results support the idea that endoglin and Alk1 haploinsufficiency leads to a common phenotype of impaired hemostasis, but through different mechanisms. This contribution opens new therapeutic approaches to HHT patients' epistaxis.

3.
Cancers (Basel) ; 13(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34503072

ABSTRACT

Autophagy is a physiological process by which various damaged or non-essential cytosolic components are recycled, contributing to cell survival under stress conditions. In cancer, autophagy can have antitumor or protumor effects depending on the developmental stage. Here, we use Western blotting, immunochemistry, and transmission electron microscopy to demonstrate that the antitumor peptide TAT-Cx43266-283, a c-Src inhibitor, blocks autophagic flux in glioblastoma stem cells (GSCs) under basal and nutrient-deprived conditions. Upon nutrient deprivation, GSCs acquired a dormant-like phenotype that was disrupted by inhibition of autophagy with TAT-Cx43266-283 or chloroquine (a classic autophagy inhibitor), leading to GSC death. Remarkably, dasatinib, a clinically available c-Src inhibitor, could not replicate TAT-Cx43266-283 effect on dormant GSCs, revealing for the first time the possible involvement of pathways other than c-Src in TAT-Cx43266-283 effect. TAT-Cx43266-283 exerts an antitumor effect both in nutrient-complete and nutrient-deprived environments, which constitutes an advantage over chloroquine and dasatinib, whose effects depend on nutrient environment. Finally, our analysis of the levels of autophagy-related proteins in healthy and glioma donors suggests that autophagy is upregulated in glioblastoma, further supporting the interest in inhibiting this process in the most aggressive brain tumor and the potential use of TAT-Cx43266-283 as a therapy for this type of cancer.

4.
Cancers (Basel) ; 13(7)2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33800564

ABSTRACT

Tumors are complex masses formed by malignant but also by normal cells. The interaction between these cells via cytokines, chemokines, growth factors, and enzymes that remodel the extracellular matrix (ECM) constitutes the tumor microenvironment (TME). This TME can be determinant in the prognosis and the response to some treatments such as immunotherapy. Depending on their TME, two types of tumors can be defined: hot tumors, characterized by an immunosupportive TME and a good response to immunotherapy; and cold tumors, which respond poorly to this therapy and are characterized by an immunosuppressive TME. A therapeutic strategy that has been shown to be useful for the conversion of cold tumors into hot tumors is vascular normalization. In this review we propose that endoglin (CD105) may be a useful target of this strategy since it is involved in the three main processes involved in the generation of the TME: angiogenesis, inflammation, and cancer-associated fibroblast (CAF) accumulation. Moreover, the analysis of endoglin expression in tumors, which is already used in the clinic to study the microvascular density and that is associated with worse prognosis, could be used to predict a patient's response to immunotherapy.

5.
Cancers (Basel) ; 13(2)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445470

ABSTRACT

Cancer is an important cause of death in childhood. In recent years, scientists have made an important effort to achieve greater precision and more personalized treatments against cancer. But since only a few pediatric patients have identifiable therapeutic targets, other ways to stop the neoplastic cell proliferation and dissemination are needed. Therefore, the inhibition of general processes involved in the growth and behavior of tumors can be a relevant strategy for the development of new cancer therapies. In the case of solid tumors, one of these processes is angiogenesis, essential for tumor growth and generation of metastases. This review summarizes the results obtained with the use of antiangiogenic drugs in the main pediatric malignant solid tumors and also an overview of clinical trials currently underway. It should be noted that due to the rarity and heterogeneity of the different types of pediatric cancer, most studies on antiangiogenic drugs include only a small number of patients or isolated clinical cases, so they are not conclusive and further studies are needed.

6.
Pflugers Arch ; 472(12): 1693-1703, 2020 12.
Article in English | MEDLINE | ID: mdl-32820344

ABSTRACT

The dopaminergic system influences the heart rhythm by inhibiting the rat cardiac sympathetic and parasympathetic neurotransmissions through activation of D2-like receptors (encompassing the D2, D3, and D4 subtypes). Whereas D2 receptor subtype activation results in cardiac sympatho-inhibition, the dopamine receptor subtypes involved in rat cardiac vago-inhibition remain unknown. Hence, this study investigated the specific functional role of the D2-like receptor subtypes (D2, D3, and/or D4) inhibiting the rat heart cholinergic drive. For this purpose, male Wistar rats were pithed and prepared for cardiac vagal stimulation. Bradycardic responses were obtained by electrical stimulation of vagal fibres (3, 6, 9 Hz; n = 100) or i.v. acetylcholine (ACh; 1, 5, 10 µg/kg; n = 15). Expression of D2, D3, and D4 receptors was studied in left and right atrium samples by PCR (n = 4). Intravenous injections of quinpirole (D2-like agonist; 1-30 µg/kg), but not of SFK-38393 (D1-like agonist; 1-30 µg/kg), dose-dependently inhibited the vagally induced bradycardia. The vago-inhibition induced by quinpirole (which failed to affect the bradycardia to i.v. ACh) was unchanged after i.v. injections of the antagonists L-741,626 (D2; 100 µg/kg) or SB-277011-A (D3; 100 µg/kg), but it was abolished by L-745,870 (D4; 100 µg/kg). mRNA levels of D2, D3, and D4 receptor subtype were detected in the left and right rat atria. Our results suggest that the quinpirole-induced vagolytic effect involves prejunctional D4 receptor subtypes, located in the left and right atria. This provides new evidence on the relevance of D4 receptor modulating the heart parasympathetic control.


Subject(s)
Heart Rate , Heart/physiology , Receptors, Dopamine D4/metabolism , Vagus Nerve/physiology , Animals , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Heart/innervation , Heart Atria/metabolism , Male , Quinpirole/pharmacology , Rats , Rats, Wistar , Receptors, Dopamine D4/agonists , Receptors, Dopamine D4/antagonists & inhibitors , Receptors, Dopamine D4/genetics , Vagus Nerve/drug effects , Vagus Nerve Stimulation
7.
Angiogenesis ; 23(2): 231-247, 2020 05.
Article in English | MEDLINE | ID: mdl-31897911

ABSTRACT

Endoglin (CD105) is an auxiliary receptor for members of the TFG-ß superfamily. Whereas it has been demonstrated that the deficiency of endoglin leads to minor and defective angiogenesis, little is known about the effect of its increased expression, characteristic of several types of cancer. Angiogenesis is essential for tumor growth, so high levels of proangiogenic molecules, such as endoglin, are supposed to be related to greater tumor growth leading to a poor cancer prognosis. However, we demonstrate here that endoglin overexpression do not stimulate sprouting or vascularization in several in vitro and in vivo models. Instead, steady endoglin overexpression keep endothelial cells in an active phenotype that results in an impairment of the correct stabilization of the endothelium and the recruitment of mural cells. In a context of continuous enhanced angiogenesis, such as in tumors, endoglin overexpression gives rise to altered vessels with an incomplete mural coverage that permit the extravasation of blood. Moreover, these alterations allow the intravasation of tumor cells, the subsequent development of metastases and, thus, a worse cancer prognosis.


Subject(s)
Endoglin/genetics , Neoplasm Metastasis/genetics , Neoplasms/blood supply , Neoplasms/genetics , Neovascularization, Pathologic/genetics , Animals , Cell Movement/genetics , Cells, Cultured , Endoglin/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Neoplasm Invasiveness , Neoplasms/pathology , Neovascularization, Pathologic/pathology , Up-Regulation/genetics
8.
PLoS One ; 12(11): e0188204, 2017.
Article in English | MEDLINE | ID: mdl-29145462

ABSTRACT

Inflammation is associated with every health condition, and is an important component of many pathologies such as cardiovascular diseases. Circulating levels of soluble endoglin have been shown to be higher in the serum of patients with cardiovascular diseases with a significant inflammatory component. The aim of this study was to evaluate the implication of circulating soluble endoglin in the inflammatory response. For this purpose, a transgenic mouse expressing human soluble endoglin (sEng+) was employed, and three different inflammatory approaches were used to mimic inflammatory conditions in different tissues. This study shows that control sEng+ mice have a normal inflammatory state. The lung and kidney injury induced by the inflammatory agents was reduced in sEng+ mice, especially the intra-alveolar and kidney infiltrates, suggesting a possible reduction in inflammation induced by soluble endoglin. To deepen into this possible effect, the leukocyte number in the bronchoalveolar lavage and air pouch lavage was evaluated and a significant reduction of neutrophil infiltration in LPS-treated lungs and ischemic kidneys from sEng+ with respect to WT mice was observed. Additionally, the mechanisms through which soluble endoglin prevents inflammation were studied. We found that in sEng+ animals the increment of proinflammatory cytokines, TNFα, IL1ß and IL6, induced by the inflammatory stimulus was reduced. Soluble endoglin also prevents the augmented adhesion molecules, ICAM, VCAM and E-selectin induced by the inflammatory stimulus. In addition, vascular permeability increased by inflammatory agents was also reduced by soluble endoglin. These results suggest that soluble endoglin modulates inflammatory-related diseases and open new perspectives leading to the development of novel and targeted approaches for the prevention and treatment of cardiovascular diseases.


Subject(s)
Endoglin/blood , Inflammation/blood , Acute Lung Injury/blood , Acute Lung Injury/chemically induced , Animals , Bronchoalveolar Lavage Fluid , Capillary Permeability , Cell Adhesion Molecules/metabolism , Cytokines/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic
9.
Expert Opin Biol Ther ; 17(9): 1053-1063, 2017 09.
Article in English | MEDLINE | ID: mdl-28656781

ABSTRACT

INTRODUCTION: Alterations in the process of angiogenesis, either by excess or by defect, are present in different common pathologies. For this reason, great efforts are being made toward the development of pro- and anti-angiogenic therapies. Since endoglin levels are enhanced in tissues undergoing angiogenesis, and changes in its expression lead to alterations in vessel formation, endoglin has become an ideal target for these types of therapies. Areas covered: In this review, the role of endoglin in angiogenesis is summarized. In addition, the authors review pro- and anti-angiogenic therapies that are currently being used and new approaches that target endoglin. The article includes therapies that are both in preclinical and clinical development. Expert opinion: Endoglin is a very good target for anti-angiogenic therapy, as demonstrated by the positive results obtained with anti-endoglin antibodies. However, although endoglin in pro-angiogenic therapies has been successful in vitro, its use has not yet reached clinical settings. Moreover, the authors believe that establishing the exact role of endoglin in angiogenesis is essential and that this should be the next step in this field in the coming years.


Subject(s)
Endoglin/metabolism , Neoplasms/therapy , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Animals , Arteriovenous Malformations/pathology , Arteriovenous Malformations/therapy , Cell- and Tissue-Based Therapy , Endoglin/antagonists & inhibitors , Genetic Therapy , Humans , Immunotherapy , Neoplasms/blood supply , Neoplasms/pathology , Neovascularization, Pathologic , Signal Transduction/drug effects
10.
Angiogenesis ; 20(1): 1-24, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27943030

ABSTRACT

Following arterial occlusion, blood vessels respond by forming a new network of functional capillaries (angiogenesis), by reorganizing preexisting capillaries through the recruitment of smooth muscle cells to generate new arteries (arteriogenesis) and by growing and remodeling preexisting collateral arterioles into physiologically relevant arteries (collateral development). All these processes result in the recovery of organ perfusion. The importance of endoglin in post-occlusion reperfusion is sustained by several observations: (1) endoglin expression is increased in vessels showing active angiogenesis/remodeling; (2) genetic endoglin haploinsufficiency in humans causes deficient angiogenesis; and (3) the reduction of endoglin expression by gene disruption or the administration of endoglin-neutralizing antibodies reduces angiogenesis and revascularization. However, the precise role of endoglin in the several processes associated with revascularization has not been completely elucidated and, in some cases, the function ascribed to endoglin by different authors is controversial. The purpose of this review is to organize in a critical way the information available for the role of endoglin in several phenomena (angiogenesis, arteriogenesis and collateral development) associated with post-ischemic revascularization.


Subject(s)
Endoglin/metabolism , Ischemia/metabolism , Ischemia/physiopathology , Neovascularization, Physiologic , Animals , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Signal Transduction , Vascular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL
...