Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 11088, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750079

ABSTRACT

Many studies seeking to understand the success of biological invasions focus on species' escape from negative interactions, such as damage from herbivores, pathogens, or predators in their introduced range (enemy release). However, much less work has been done to assess the possibility that introduced species might shed mutualists such as pollinators, seed dispersers, and mycorrhizae when they are transported to a new range. We ran a cross-continental field study and found that plants were being visited by 2.6 times more potential pollinators with 1.8 times greater richness in their native range than in their introduced range. Understanding both the positive and negative consequences of introduction to a new range can help us predict, monitor, and manage future invasion events.


Subject(s)
Introduced Species , Animals , Pollination , Mycorrhizae/physiology , Symbiosis , Plants , Seed Dispersal , Ecosystem
2.
Sci Adv ; 9(41): eadh0756, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824611

ABSTRACT

Insect pollinator biodiversity is changing rapidly, with potential consequences for the provision of crop pollination. However, the role of land use-climate interactions in pollinator biodiversity changes, as well as consequent economic effects via changes in crop pollination, remains poorly understood. We present a global assessment of the interactive effects of climate change and land use on pollinator abundance and richness and predictions of the risk to crop pollination from the inferred changes. Using a dataset containing 2673 sites and 3080 insect pollinator species, we show that the interactive combination of agriculture and climate change is associated with large reductions in insect pollinators. As a result, it is expected that the tropics will experience the greatest risk to crop production from pollinator losses. Localized risk is highest and predicted to increase most rapidly, in regions of sub-Saharan Africa, northern South America, and Southeast Asia. Via pollinator loss alone, climate change and agricultural land use could be a risk to human well-being.


Subject(s)
Climate Change , Crops, Agricultural , Animals , Humans , Insecta , Biodiversity , Pollination , Agriculture , Ecosystem
3.
Proc Biol Sci ; 290(2005): 20231022, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37583319

ABSTRACT

When a plant is introduced to a new ecosystem it may escape from some of its coevolved herbivores. Reduced herbivore damage, and the ability of introduced plants to allocate resources from defence to growth and reproduction can increase the success of introduced species. This mechanism is known as enemy release and is known to occur in some species and situations, but not in others. Understanding the conditions under which enemy release is most likely to occur is important, as this will help us to identify which species and habitats may be most at risk of invasion. We compared in situ measurements of herbivory on 16 plant species at 12 locations within their native European and introduced Australian ranges to quantify their level of enemy release and understand the relationship between enemy release and time, space and climate. Overall, plants experienced approximately seven times more herbivore damage in their native range than in their introduced range. We found no evidence that enemy release was related to time since introduction, introduced range size, temperature, precipitation, humidity or elevation. From here, we can explore whether traits, such as leaf defences or phylogenetic relatedness to neighbouring plants, are stronger indicators of enemy release across species.


Subject(s)
Ecosystem , Plants , Phylogeny , Australia , Herbivory , Introduced Species
4.
Ecology ; 104(8): e4110, 2023 08.
Article in English | MEDLINE | ID: mdl-37232411

ABSTRACT

Bees provide important ecological services, and many species are threatened globally, yet our knowledge of wild bee ecology and evolution is limited. While evolving from carnivorous ancestors, bees had to develop strategies for coping with limitations imposed on them by a plant-based diet, with nectar providing energy and essential amino acids and pollen as an extraordinary, protein- and lipid-rich food nutritionally similar to animal tissues. Both nectar and pollen display one characteristic common to plants, a high ratio of potassium to sodium (K:Na), potentially leading to bee underdevelopment, health problems, and death. We discuss why and how the ratio of K:Na contributes to bee ecology and evolution and how considering this factor in future studies will provide new knowledge, more accurately depicting the relationship of bees with their environments. Such knowledge is essential for understanding how plants and bees function and interact and is needed to effectively protect wild bees.


Subject(s)
Plant Nectar , Pollination , Bees , Animals , Pollen , Plants , Sodium , Flowers
5.
Trends Ecol Evol ; 38(8): 749-759, 2023 08.
Article in English | MEDLINE | ID: mdl-37062597

ABSTRACT

Inferring insect pollination from compression fossils and amber inclusions is difficult because of a lack of consensus on defining an insect pollinator and the challenge of recognizing this ecological relationship in deep time. We propose a conceptual definition for such insects and an operational classification into pollinator or presumed pollinator. Using this approach, we identified 15 insect families that include fossil pollinators and show that pollination relationships have existed since at least the Upper Jurassic (~163 Ma). Insects prior to this can only be classified as presumed pollinators. This gives a more nuanced insight into the origin and evolution of an ecological relationship that is vital to the establishment, composition and conservation of modern terrestrial ecosystems.


Subject(s)
Ecosystem , Pollination , Animals , Insecta , Fossils , Flowers
6.
J Anim Ecol ; 92(2): 297-309, 2023 02.
Article in English | MEDLINE | ID: mdl-35978494

ABSTRACT

Determining when animal populations have experienced stress in the past is fundamental to understanding how risk factors drive contemporary and future species' responses to environmental change. For insects, quantifying stress and associating it with environmental factors has been challenging due to a paucity of time-series data and because detectable population-level responses can show varying lag effects. One solution is to leverage historic entomological specimens to detect morphological proxies of stress experienced at the time stressors emerged, allowing us to more accurately determine population responses. Here we studied specimens of four bumblebee species, an invaluable group of insect pollinators, from five museums collected across Britain over the 20th century. We calculated the degree of fluctuating asymmetry (FA; random deviations from bilateral symmetry) between the right and left forewings as a potential proxy of developmental stress. We: (a) investigated whether baseline FA levels vary between species, and how this compares between the first and second half of the century; (b) determined the extent of FA change over the century in the four bumblebee species, and whether this followed a linear or nonlinear trend; (c) tested which annual climatic conditions correlated with increased FA in bumblebees. Species differed in their baseline FA, with FA being higher in the two species that have recently expanded their ranges in Britain. Overall, FA significantly increased over the century but followed a nonlinear trend, with the increase starting c. 1925. We found relatively warm and wet years were associated with higher FA. Collectively our findings show that FA in bumblebees increased over the 20th century and under weather conditions that will likely increase in frequency with climate change. By plotting FA trends and quantifying the contribution of annual climate conditions on past populations, we provide an important step towards improving our understanding of how environmental factors could impact future populations of wild beneficial insects.


Subject(s)
Climate Change , Museums , Animals , Bees
7.
Zootaxa ; 5361(2): 151-158, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38220767

ABSTRACT

A new species of Lygistorrhina (Lygistorrhina) Skuse, 1890, Lygistorrhina woodi sp. nov., is described. The specimen was dissected from an alcohol-preserved flower of Ceropegia aristolochioides ssp. deflersiana Bruyns (Apocynaceae, Asclepiadoideae, Ceropegieae) stored in the Kew herbarium. This is the first occurrence of the lygistorrhine gnats in a hot, semi-arid climate. A key to all known species of the subgenus Lygistorrhina (Lygistorrhina) is provided.


Subject(s)
Ceratopogonidae , Diptera , Animals , Nematocera , Flowers , Climate
8.
Biol Lett ; 18(10): 20220220, 2022 10.
Article in English | MEDLINE | ID: mdl-36259169

ABSTRACT

Introduced species often benefit from escaping their enemies when they are transported to a new range, an idea commonly expressed as the enemy release hypothesis. However, species might shed mutualists as well as enemies when they colonize a new range. Loss of mutualists might reduce the success of introduced populations, or even cause failure to establish. We provide the first quantitative synthesis testing this natural but often overlooked parallel of the enemy release hypothesis, which is known as the missed mutualist hypothesis. Meta-analysis showed that plants interact with 1.9 times more mutualist species, and have 2.3 times more interactions with mutualists per unit time in their native range than in their introduced range. Species may mitigate the negative effects of missed mutualists. For instance, selection arising from missed mutualists could cause introduced species to evolve either to facilitate interactions with a new suite of species or to exist without mutualisms. Just as enemy release can allow introduced populations to redirect energy from defence to growth, potentially evolving increased competitive ability, species that shift to strategies without mutualists may be able to reallocate energy from mutualism toward increased competitive ability or seed production. The missed mutualist hypothesis advances understanding of the selective forces and filters that act on plant species in the early stages of introduction and establishment and thus could inform the management of introduced species.


Subject(s)
Plants , Symbiosis , Introduced Species
9.
Science ; 377(6605): 471-472, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35901153

ABSTRACT

Research shows that seaweeds depend on crustaceans for fertilization.


Subject(s)
Biological Evolution , Gracilaria , Isopoda , Plants , Pollination , Seaweed , Animals , Gracilaria/physiology , Seaweed/physiology
10.
Conserv Biol ; 36(4): e13886, 2022 08.
Article in English | MEDLINE | ID: mdl-35075685

ABSTRACT

Pollinator declines have prompted efforts to assess how land-use change affects insect pollinators and pollination services in agricultural landscapes. Yet many tools to measure insect pollination services require substantial landscape-scale data and technical expertise. In expert workshops, 3 straightforward methods (desk-based method, field survey, and empirical manipulation with exclusion experiments) for rapid insect pollination assessment at site scale were developed to provide an adaptable framework that is accessible to nonspecialist with limited resources. These methods were designed for TESSA (Toolkit for Ecosystem Service Site-Based Assessment) and allow comparative assessment of pollination services at a site of conservation interest and in its most plausible alternative state (e.g., converted to agricultural land). We applied the methods at a nature reserve in the United Kingdom to estimate the value of insect pollination services provided by the reserve. The economic value of pollination services provided by the reserve ranged from US$6163 to US$11,546/year. The conversion of the reserve to arable land would provide no insect pollination services and a net annual benefit from insect-pollinated crop production of approximately $1542/year (US$24∙ha-1 ∙year-1 ). The methods had wide applicability and were readily adapted to different insect-pollinated crops: rape (Brassica napus) and beans (Vicia faba) crops. All methods were rapidly employed under a low budget. The relatively less robust methods that required fewer resources yielded higher estimates of annual insect pollination benefit.


Diversidad y Conservación de Gasterópodos Subterráneos de Agua Dulce en los Estados Unidos y en México Resumen Las declinaciones de los polinizadores han impulsado los esfuerzos por evaluar cómo el cambio del uso de suelo afecta a los insectos polinizadores y los servicios de polinización en los paisajes agrícolas. Aun así, muchas de las herramientas para medir los servicios de los insectos polinizadores requieren datos sustanciales a escala de paisaje y el conocimiento de expertos. Desarrollamos tres métodos sencillos (método de gabinete, censo de campo y manipulación empírica con experimentos de exclusión) durante algunos talleres de expertos para la evaluación rápida de la polinización por insectos a escala de sitio con el objetivo de proporcionar un marco de trabajo adaptable y accesible para quienes no son especialistas y cuentan con recursos limitados. Estos métodos fueron diseñados para TESSA (Toolkit for Ecosystem Service Site-Based Assessment, en inglés) y permiten la evaluación comparativa de los servicios de polinización en los sitios de interés para la conservación y su estado alternativo más plausible (p. ej.: convertido a suelo agrícola). Aplicamos los métodos en una reserva natural del Reino Unido para estimar el valor de los servicios de polinización por insectos que proporciona la reserva. El valor económico de los servicios de polinización que proporciona la reserva varió desde US$6,163 a US$11,546 al año-1 . La conversión de la reserva a suelo arable no proporcionaría servicios de polinización por insectos, pero sí un beneficio anual neto a partir de la producción de cultivos polinizados por insectos de aproximadamente $1,542 al año-1 (US$24 ha-1 año-1 ). Los métodos tuvieron una aplicabilidad generalizada y estaban ya adaptados a los diferentes cultivos polinizados por insectos: cultivos de colza (Brassica napus) y habas (Vicia faba). Todos los métodos pudieron usarse con bajo presupuesto. Los métodos relativamente menos robustos que requirieron menos recursos produjeron estimados más elevados del beneficio anual de la polinización por insectos.


Subject(s)
Crops, Agricultural , Pollination , Animals , Bees , Brassica napus , Conservation of Natural Resources , Ecosystem , Insecta , Vicia faba
11.
Nat Commun ; 12(1): 2902, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34006837

ABSTRACT

Pollinating species are in decline globally, with land use an important driver. However, most of the evidence on which these claims are made is patchy, based on studies with low taxonomic and geographic representativeness. Here, we model the effect of land-use type and intensity on global pollinator biodiversity, using a local-scale database covering 303 studies, 12,170 sites, and 4502 pollinating species. Relative to a primary vegetation baseline, we show that low levels of intensity can have beneficial effects on pollinator biodiversity. Within most anthropogenic land-use types however, increasing intensity is associated with significant reductions, particularly in urban (43% richness and 62% abundance reduction compared to the least intensive urban sites), and pasture (75% abundance reduction) areas. We further show that on cropland, the strongly negative response to intensity is restricted to tropical areas, and that the direction and magnitude of response differs among taxonomic groups. Our findings confirm widespread effects of land-use intensity on pollinators, most significantly in the tropics, where land use is predicted to change rapidly.


Subject(s)
Agriculture/methods , Biodiversity , Insecta/physiology , Pollination/physiology , Animals , Ecosystem , Geography , Insecta/classification , Population Density , Species Specificity
12.
Am J Bot ; 107(10): 1355-1365, 2020 10.
Article in English | MEDLINE | ID: mdl-33098337

ABSTRACT

PREMISE: Species of Apocynaceae are pollinated by a diverse assemblage of animals. Here we report the first record of specialized cockroach pollination in the family, involving an endangered climbing vine species, Vincetoxicum hainanense in China. Experiments were designed to provide direct proof of cockroach pollination and compare the effectiveness of other flower visitors. METHODS: We investigated the reproductive biology, pollination ecology, pollinaria removal, pollinia insertion, and fruit set following single visits by the most common insects. In addition, we reviewed reports of cockroaches as pollinators of other plants and analyzed the known pollination systems in Vincetoxicum in a phylogenetic context. RESULTS: The small, pale green flowers of V. hainanense opened during the night. The flowers were not autogamous, but were self-compatible. Flower visitors included beetles, flies, ants and bush crickets, but the most effective pollinator was the cockroach Blattella bisignata, the only visitor that carried pollen between plants. Less frequent and effective pollinators are ants and Carabidae. Plants in this genus are predominantly pollinated by flies, moths and wasps. CONCLUSIONS: Globally, only 11 plant species are known to be cockroach-pollinated. Because their range of floral features encompass similarities and differences, defining a "cockroach pollination syndrome" is difficult. One commonality is that flowers are often visited by insects other than cockroaches, such as beetles, that vary in their significance as pollinators. Cockroach pollination is undoubtedly more widespread than previously thought and requires further attention.


Subject(s)
Pollination , Vincetoxicum , Animals , China , Cockroaches , Flowers , Phylogeny
14.
Curr Opin Insect Sci ; 38: 34-39, 2020 04.
Article in English | MEDLINE | ID: mdl-32088649

ABSTRACT

Insect pollinators face a number of well-documented threats that challenge their survival at an individual and community level. The effect of extreme events on pollinator assemblages has received little attention to date, partly due to a lack of consensus on what constitutes extreme, but also because robust pre-event data is often lacking. Here, the term SHOCK (Sudden, High-magnitude Opportunity for a Catastrophic 'Kick') is used to encompass attributes of extreme events that carry the potential to add additional challenges to insect communities already facing environmental stressors. Selected events from two SHOCK categories are explored (those with natural origins and those that are human-mediated). The value of studying single events is considered in the context of a third category; human-enhanced SHOCKs.


Subject(s)
Biodiversity , Extreme Weather , Insecta/physiology , Pollination , Animals
16.
Sci Rep ; 9(1): 7376, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31089144

ABSTRACT

Species extinctions undermine ecosystem functioning, with the loss of a small subset of functionally important species having a disproportionate impact. However, little is known about the effects of species loss on plant-pollinator interactions. We addressed this issue in a field experiment by removing the plant species with the highest visitation frequency, then measuring the impact of plant removal on flower visitation, pollinator effectiveness and insect foraging in several sites. Our results show that total visitation decreased exponentially after removing 1-4 most visited plants, suggesting that these plants could benefit co-occurring ones by maintaining high flower visitor abundances. Although we found large variation among plant species, the redistribution of the pollinator guild affected mostly the other plants with high visitor richness. Also, the plant traits mediated the effect of removal on flower visitation; while visitation of plants which had smaller inflorescences and more sugar per flower increased after removal, flower visitors did not switch between flower shapes and visitation decreased mostly in plants visited by many morpho-species of flower visitors. Together, these results suggest that the potential adaptive foraging was constrained by flower traits. Moreover, pollinator effectiveness fluctuated but was not directly linked to changes of flower visitation. In conclusion, it seems that the loss of generalist plants alters plant-pollinator interactions by decreasing pollinator abundance with implications for pollination and insect foraging. Therefore, generalist plants have high conservation value because they sustain the complex pattern of plant-pollinator interactions.


Subject(s)
Extinction, Biological , Feeding Behavior/physiology , Food Chain , Insecta/physiology , Pollination/physiology , Animal Migration/physiology , Animals , Flowers , Pilot Projects , Plant Dispersal , Species Specificity
17.
Ann Bot ; 123(2): 311-325, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30099492

ABSTRACT

Background and Aims: Large clades of angiosperms are often characterized by diverse interactions with pollinators, but how these pollination systems are structured phylogenetically and biogeographically is still uncertain for most families. Apocynaceae is a clade of >5300 species with a worldwide distribution. A database representing >10 % of species in the family was used to explore the diversity of pollinators and evolutionary shifts in pollination systems across major clades and regions. Methods: The database was compiled from published and unpublished reports. Plants were categorized into broad pollination systems and then subdivided to include bimodal systems. These were mapped against the five major divisions of the family, and against the smaller clades. Finally, pollination systems were mapped onto a phylogenetic reconstruction that included those species for which sequence data are available, and transition rates between pollination systems were calculated. Key Results: Most Apocynaceae are insect pollinated with few records of bird pollination. Almost three-quarters of species are pollinated by a single higher taxon (e.g. flies or moths); 7 % have bimodal pollination systems, whilst the remaining approx. 20 % are insect generalists. The less phenotypically specialized flowers of the Rauvolfioids are pollinated by a more restricted set of pollinators than are more complex flowers within the Apocynoids + Periplocoideae + Secamonoideae + Asclepiadoideae (APSA) clade. Certain combinations of bimodal pollination systems are more common than others. Some pollination systems are missing from particular regions, whilst others are over-represented. Conclusions: Within Apocynaceae, interactions with pollinators are highly structured both phylogenetically and biogeographically. Variation in transition rates between pollination systems suggest constraints on their evolution, whereas regional differences point to environmental effects such as filtering of certain pollinators from habitats. This is the most extensive analysis of its type so far attempted and gives important insights into the diversity and evolution of pollination systems in large clades.


Subject(s)
Apocynaceae/genetics , Biological Evolution , Insecta , Pollination/genetics , Animals , Biodiversity , Birds
18.
Proc Biol Sci ; 285(1875)2018 03 28.
Article in English | MEDLINE | ID: mdl-29563263

ABSTRACT

Species traits are thought to predict feeding specialization and the vulnerability of a species to extinctions of interaction partners, but the context in which a species evolved and currently inhabits may also matter. Notably, the predictive power of traits may require that traits evolved to fit interaction partners. Furthermore, local abiotic and biotic conditions may be important. On islands, for instance, specialized and vulnerable species are predicted to be found mainly in mountains, whereas species in lowlands should be generalized and less vulnerable. We evaluated these predictions for hummingbirds and their nectar-food plants on Antillean islands. Our results suggest that the rates of hummingbird trait divergence were higher among ancestral mainland forms before the colonization of the Antilles. In correspondence with the limited trait evolution that occurred within the Antilles, local abiotic and biotic conditions-not species traits-correlate with hummingbird resource specialization and the vulnerability of hummingbirds to extinctions of their floral resources. Specifically, hummingbirds were more specialized and vulnerable in conditions with high topographical complexity, high rainfall, low temperatures and high floral resource richness, which characterize the Antillean Mountains. These findings show that resource specialization and species vulnerability to extinctions of interaction partners are highly context-dependent.


Subject(s)
Biological Evolution , Birds/physiology , Extinction, Biological , Flowers/physiology , Animals , Beak , Birds/anatomy & histology , Body Size , Confidence Intervals , Flowers/anatomy & histology , Linear Models , Plant Nectar , Pollination , Species Specificity , Temperature , West Indies
19.
R Soc Open Sci ; 4(10): 170957, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29134093

ABSTRACT

The popularity of science blogging has increased in recent years, but the number of academic scientists who maintain regular blogs is limited. The role and impact of science communication blogs aimed at general audiences is often discussed, but the value of science community blogs aimed at the academic community has largely been overlooked. Here, we focus on our own experiences as bloggers to argue that science community blogs are valuable to the academic community. We use data from our own blogs (n = 7) to illustrate some of the factors influencing reach and impact of science community blogs. We then discuss the value of blogs as a standalone medium, where rapid communication of scholarly ideas, opinions and short observational notes can enhance scientific discourse, and discussion of personal experiences can provide indirect mentorship for junior researchers and scientists from underrepresented groups. Finally, we argue that science community blogs can be treated as a primary source and provide some key points to consider when citing blogs in peer-reviewed literature.

20.
Conserv Biol ; 31(1): 24-29, 2017 02.
Article in English | MEDLINE | ID: mdl-27624925

ABSTRACT

Research on urban insect pollinators is changing views on the biological value and ecological importance of cities. The abundance and diversity of native bee species in urban landscapes that are absent in nearby rural lands evidence the biological value and ecological importance of cities and have implications for biodiversity conservation. Lagging behind this revised image of the city are urban conservation programs that historically have invested in education and outreach rather than programs designed to achieve high-priority species conservation results. We synthesized research on urban bee species diversity and abundance to determine how urban conservation could be repositioned to better align with new views on the ecological importance of urban landscapes. Due to insect pollinators' relatively small functional requirements-habitat range, life cycle, and nesting behavior-relative to larger mammals, we argue that pollinators put high-priority and high-impact urban conservation within reach. In a rapidly urbanizing world, transforming how environmental managers view the city can improve citizen engagement and contribute to the development of more sustainable urbanization.


Subject(s)
Bees , Cities , Conservation of Natural Resources , Urbanization , Animals , Biodiversity , Ecosystem , Insecta , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...