Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 1047277, 2022.
Article in English | MEDLINE | ID: mdl-36505432

ABSTRACT

A major barrier in the use of humanized mice as models of HIV-1 (HIV) infection is the inadequate generation of virus-specific antibody responses. Humanized DRAGA (hDRAGA) mice generate antigen-specific class switched antibodies to several pathogens, but whether they do so in HIV infection and the extent to which their secondary lymphoid tissues (sLT) support germinal center responses is unknown. hDRAGA mice were evaluated for their ability to support HIV replication, generate virus-specific antibody responses, develop splenocyte subsets, and organize sLT architecture. hDRAGA mice supported persistent HIV replication and developed modest levels of gp41-specific human IgM and IgG. Spleens from uninfected and HIV infected hDRAGA mice contained differentiated B and CD4+ T cell subsets including germinal center (GC) B cells and T follicular helper cells (TFH); relative expansions of TFH and CD8+ T cells, but not GC B cells, occurred in HIV-infected hDRAGA mice compared to uninfected animals. Immunofluorescent staining of spleen and mesenteric lymph node sections demonstrated atypical morphology. Most CD4+ and CD8+ T cells resided within CD20hi areas. CD20hi areas lacked canonical germinal centers, as defined by staining for IgD-Ki67+cells. No human follicular dendritic cells (FDC) were detected. Mouse FDC were distributed broadly throughout both CD20hi and CD20lo regions of sLT. HIV RNA particles were detected by in situ hybridization within CD20+ areas and some co-localized with mouse FDC. Viral RNA+ cells were more concentrated within CD20hi compared to CD20lo areas of sLT, but differences were diminished in spleen and eliminated in mesenteric lymph nodes when adjusted for CD4+ cell frequency. Thus, hDRAGA mice recapitulated multiple aspects of HIV pathogenesis including HIV replication, relative expansions in TFH and CD8+ T cells, and modest HIV-specific antibody production. Nevertheless, classical germinal center morphology in sLT was not observed, which may account for the inefficient expansion of GC B cells and generation of low titer human antibody responses to HIV-1 in this model.


Subject(s)
HIV Infections , HIV-1 , Mice , Animals , CD8-Positive T-Lymphocytes , Germinal Center , HIV Antibodies
2.
Front Immunol ; 13: 878273, 2022.
Article in English | MEDLINE | ID: mdl-36420277

ABSTRACT

Follicular helper CD4+ T cells (TFH) are highly permissive to HIV and major foci of virus expression in both untreated and treated infection. Follicular regulatory CD4+ T cells (TFR) limit TFH numbers and function in vitro and in vivo. We evaluated the hypothesis that TFR suppress HIV replication in TFH using a well-established model of ex vivo HIV infection that employs tonsil cells from HIV uninfected individuals spinoculated with CXCR4- and CCR5-tropic HIV-GFP reporter viruses. Both CXCR4 and CCR5-tropic HIV replication were reduced in TFH cultured with TFR as compared to controls. Blocking antibodies to CD39, CTLA-4, IL-10, and TGF-beta failed to reverse suppression of HIV replication by TFR, and there were no sex differences in TFR suppressive activity. TFR reduced viability of TFH and even more so reduced HIV infected TFH as assessed by total and integrated HIV DNA. Exogenous IL-2 enhanced TFH viability and particularly numbers of GFP+ TFH in a concentration dependent manner. TFR reduced productively infected TFH at low and moderate IL-2 concentrations, and this was associated with decreases in extracellular IL-2. Both IL-2 expressing cells and larger numbers of FoxP3+CD4+ cells were detected in follicles and germinal centers of lymph nodes of people living with HIV. TFR may deplete TFH in vivo through restriction of IL-2 and thereby contribute to decay of HIV expressing cells in B cell follicles during HIV infection.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , T Follicular Helper Cells , T-Lymphocytes, Regulatory , Interleukin-2
3.
J Virol ; 94(10)2020 05 04.
Article in English | MEDLINE | ID: mdl-32161179

ABSTRACT

The major obstacle to a cure for HIV infection is the persistence of replication-competent viral reservoirs during antiretroviral therapy. HIV-specific chimeric antigen receptor (CAR) T cells have been developed to target latently infected CD4+ T cells that express virus either spontaneously or after intentional latency reversal. Whether HIV-specific CAR-T cells can recognize and eliminate the follicular dendritic cell (FDC) reservoir of HIV-bound immune complexes (ICs) is unknown. We created HIV-specific CAR-T cells using human peripheral blood mononuclear cells (PBMCs) and a CAR construct that enables the expression of CD4 (domains 1 and 2) and the carbohydrate recognition domain of mannose binding lectin (MBL) to target native HIV Env (CD4-MBL CAR). We assessed CAR-T cell cytotoxicity using a carboxyfluorescein succinimidyl ester (CFSE) release assay and evaluated CAR-T cell activation through interferon gamma (IFN-γ) production and CD107a membrane accumulation by flow cytometry. CD4-MBL CAR-T cells displayed potent lytic and functional responses to Env-expressing cell lines and HIV-infected CD4+ T cells but were ineffective at targeting FDC bearing HIV-ICs. CD4-MBL CAR-T cells were unresponsive to cell-free HIV or concentrated, immobilized HIV-ICs in cell-free experiments. Blocking intercellular adhesion molecule-1 (ICAM-1) inhibited the cytolytic response of CD4-MBL CAR-T cells to Env-expressing cell lines and HIV-infected CD4+ T cells, suggesting that factors such as adhesion molecules are necessary for the stabilization of the CAR-Env interaction to elicit a cytotoxic response. Thus, CD4-MBL CAR-T cells are unable to eliminate the FDC-associated HIV reservoir, and alternative strategies to eradicate this reservoir must be sought.IMPORTANCE Efforts to cure HIV infection have focused primarily on the elimination of latently infected CD4+ T cells. Few studies have addressed the unique reservoir of infectious HIV that exists on follicular dendritic cells (FDCs), persists in vivo during antiretroviral therapy, and likely contributes to viral rebound upon cessation of antiretroviral therapy. We assessed the efficacy of a novel HIV-specific chimeric antigen receptor (CAR) T cell to target both HIV-infected CD4+ T cells and the FDC reservoir in vitro Although CAR-T cells eliminated CD4+ T cells that express HIV, they did not respond to or eliminate FDC bound to HIV. These findings reveal a fundamental limitation to CAR-T cell therapy to eradicate HIV.


Subject(s)
Dendritic Cells, Follicular/immunology , HIV Infections/immunology , HIV-1/immunology , Receptors, Chimeric Antigen/immunology , Antibodies, Monoclonal , Antibodies, Viral , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line , Dendritic Cells , HIV Envelope Protein gp120/immunology , HIV Infections/virology , Humans , Intercellular Adhesion Molecule-1/metabolism , Leukocytes, Mononuclear/virology , Lymphocyte Activation , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen/genetics , Virus Latency/physiology
4.
Curr Opin HIV AIDS ; 14(2): 71-76, 2019 03.
Article in English | MEDLINE | ID: mdl-30585797

ABSTRACT

PURPOSE OF REVIEW: T cells within B-cell follicles of secondary lymphoid tissues play key roles in HIV immunopathogenesis. This review highlights recent findings and identifies gaps in current knowledge. RECENT FINDINGS: B-cell follicles are major sites of virus replication and demonstrate significant impairments in the generation of humoral immunity in HIV infection. Follicular T helper cells (Tfh), follicular T regulatory cells (Tfr) and follicular CD8 T cells (fCD8) play key roles in HIV immunopathogenesis. Tfh and more recently Tfr are highly permissive to HIV, and may serve as reservoirs of HIV in treated infection. Virus-specific CD8 T cells are less abundant in B-cell follicles than extrafollicular regions, but their effector mechanisms remain an area of significant controversy. Impairments in Tfh likely contribute to impaired humoral immunity and potential mechanisms include B-cell counter-regulatory mechanisms, Tfr suppression and diminished repertoire breadth. A better understanding of the roles of Tfh, Tfr and fCD8 in HIV immunopathogenesis is critical to the development of effective HIV vaccines and cure strategies. SUMMARY: Tfh, Tfr and fCD8 contribute to HIV persistence and impaired humoral immunity. A better understanding of their roles could facilitate vaccine development and HIV cure strategies.


Subject(s)
HIV Infections/immunology , HIV-1/physiology , T-Lymphocyte Subsets/immunology , Animals , HIV Infections/genetics , HIV Infections/pathology , HIV Infections/virology , HIV-1/genetics , Humans , T-Lymphocyte Subsets/virology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...