Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
4.
J Hered ; 104(6): 807-20, 2013.
Article in English | MEDLINE | ID: mdl-23997205

ABSTRACT

Canine hypoadrenocorticism is believed to be an immune-related condition. It is rare in the overall dog population but shows a breed-related predisposition with Standard poodles and Portuguese water dogs having a greater prevalence of the condition. It shares many similarities with human primary adrenal insufficiency and is believed to be a naturally occurring, spontaneous model for the human condition. Short haplotype blocks and low levels of linkage disequilibrium in the human genome mean that the identification of genetic contributors to the condition requires large sample numbers. Pedigree dogs have high linkage disequilibrium and long haplotypes within a breed, increasing the potential of identifying novel genes that contribute to canine genetic disease. We investigated 222 SNPs from 42 genes that have been associated or may be implicated in human Addison's disease. We conducted case-control analyses in 3 pedigree dog breeds (Labrador retriever: affected n = 30, unaffected = 76; Cocker Spaniel: affected n = 19, unaffected = 53; Springer spaniel: affected n = 26, unaffected = 46) and identified 8 associated alleles in genes COL4A4, OSBPL9, CTLA4, PTPN22, and STXBP5 in 3 pedigree breeds. Association with immune response genes PTPN22 and CTLA4 in certain breeds suggests an underlying immunopathogenesis of the disease. These results suggest that canine hypoadrenocorticism could be a useful model for studying comparative genetics relevant to human Addison's disease.


Subject(s)
Adrenal Insufficiency/veterinary , Dog Diseases/genetics , Genetic Association Studies , Alleles , Animals , Base Sequence , Breeding , Chromosome Mapping , Dog Diseases/immunology , Dogs , Gene Frequency , Genotype , Haplotypes , Molecular Sequence Annotation , Polymorphism, Single Nucleotide
5.
Eur J Hum Genet ; 20(11): 1105-11, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22713808

ABSTRACT

Biobanks can have a pivotal role in elucidating disease etiology, translation, and advancing public health. However, meeting these challenges hinges on a critical shift in the way science is conducted and requires biobank harmonization. There is growing recognition that a common strategy is imperative to develop biobanking globally and effectively. To help guide this strategy, we articulate key principles, goals, and priorities underpinning a roadmap for global biobanking to accelerate health science, patient care, and public health. The need to manage and share very large amounts of data has driven innovations on many fronts. Although technological solutions are allowing biobanks to reach new levels of integration, increasingly powerful data-collection tools, analytical techniques, and the results they generate raise new ethical and legal issues and challenges, necessitating a reconsideration of previous policies, practices, and ethical norms. These manifold advances and the investments that support them are also fueling opportunities for biobanks to ultimately become integral parts of health-care systems in many countries. International harmonization to increase interoperability and sustainability are two strategic priorities for biobanking. Tackling these issues requires an environment favorably inclined toward scientific funding and equipped to address socio-ethical challenges. Cooperation and collaboration must extend beyond systems to enable the exchange of data and samples to strategic alliances between many organizations, including governmental bodies, funding agencies, public and private science enterprises, and other stakeholders, including patients. A common vision is required and we articulate the essential basis of such a vision herein.


Subject(s)
Biological Specimen Banks/organization & administration , Biological Specimen Banks/ethics , Biological Specimen Banks/legislation & jurisprudence , Biological Specimen Banks/trends , Data Collection , Databases, Factual
6.
Gastroenterology ; 141(3): 827-836.e1-3, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21699787

ABSTRACT

BACKGROUND & AIMS: Polymorphisms in brain-derived neurotrophic factor (BDNF) can affect brain and behavioral responses. However, little is known about the effects of a single nucleotide polymorphism (SNP) in BDNF, at codon 66 (the Val-Met substitution, detected in approximately 33% of the Caucasian population) on stimulation-induced plasticity in the cortico-bulbar system. We examined whether this SNP influenced outcomes of different forms of neurostimulation applied to the pharyngeal motor cortex. METHODS: Thirty-eight healthy volunteers were assessed for corticobulbar excitability after single-pulse, transcranial magnetic stimulation of induced pharyngeal electromyographic responses, recorded from a swallowed intraluminal catheter. Thereafter, volunteers were conditioned with pharyngeal electrical stimulation, or 2 forms of repetitive (1 and 5 Hz) transcranial magnetic stimulation (rTMS). Repeated measurements of pharyngeal motor-evoked potentials were assessed with transcranial magnetic stimulation for as long as 1 hour after the 3 forms of neurostimulation and correlated with SNPs at codon 66 of BDNF (encoding Val or Met). RESULTS: Pharyngeal electrical stimulation significantly increased the amplitude of motor-evoked potentials in individuals with the SNP that encoded Val66, compared to those that encoded Met66, with a strong GENOTYPE*TIME interaction (F8,112 = 2.4; P = .018). By contrast, there was a significant reduction in latencies of subjects with the SNP that encoded Met66 after 5-Hz rTMS (F3,60 = 4.9; P = .04). In addition, the expected inhibitory effect of 1-Hz rTMS on amplitude was not observed in subjects with the SNP that encoded Met66 in BDNF (F7,140 = 2.23; P = .035). CONCLUSIONS: An SNP in human BDNF at codon 66 affects plasticity of the pharyngeal cortex to different forms of neurostimulation. Genetic analysis might help select specific forms of neurostimulation as therapeutics for patients with disorders such as dysphagic stroke.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/physiology , Motor Cortex/physiology , Neuronal Plasticity/genetics , Neuronal Plasticity/physiology , Pharyngeal Muscles/physiology , Polymorphism, Single Nucleotide/genetics , Aged , Aged, 80 and over , Case-Control Studies , Codon/genetics , Electric Stimulation , Electromyography , Evoked Potentials, Motor/physiology , Female , Genotype , Humans , Male , Transcranial Magnetic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL