Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Exp Med ; 221(2)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38284995

ABSTRACT

In this issue of JEM, Allyn et al. (https://doi.org/10.1084/jem.20230985) provide mechanistic insights into the nuclear organization of the Tcrb locus that permits long-range genomic rearrangements.


Subject(s)
Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor , Receptors, Antigen, T-Cell, alpha-beta , Receptors, Antigen, T-Cell, alpha-beta/genetics
2.
Cell Rep ; 41(9): 111730, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36450242

ABSTRACT

Mammalian genomes are organized into three-dimensional DNA structures called A/B compartments that are associated with transcriptional activity/inactivity. However, whether these structures are simply correlated with gene expression or are permissive/impermissible to transcription has remained largely unknown because we lack methods to measure DNA organization and transcription simultaneously. Recently, we developed RNA & DNA (RD)-SPRITE, which enables genome-wide measurements of the spatial organization of RNA and DNA. Here we show that RD-SPRITE measures genomic structure surrounding nascent pre-mRNAs and maps their spatial contacts. We find that transcription occurs within B compartments-with multiple active genes simultaneously colocalizing within the same B compartment-and at genes proximal to nucleoli. These results suggest that localization near or within nuclear structures thought to be inactive does not preclude transcription and that active transcription can occur throughout the nucleus. In general, we anticipate RD-SPRITE will be a powerful tool for exploring relationships between genome structure and transcription.


Subject(s)
Cell Nucleus , RNA , Animals , RNA/genetics , Cell Nucleus/genetics , Cell Nucleolus , RNA Precursors , Genomics , Mammals
3.
Nat Protoc ; 17(1): 36-75, 2022 01.
Article in English | MEDLINE | ID: mdl-35013617

ABSTRACT

A fundamental question in gene regulation is how cell-type-specific gene expression is influenced by the packaging of DNA within the nucleus of each cell. We recently developed Split-Pool Recognition of Interactions by Tag Extension (SPRITE), which enables mapping of higher-order interactions within the nucleus. SPRITE works by cross-linking interacting DNA, RNA and protein molecules and then mapping DNA-DNA spatial arrangements through an iterative split-and-pool barcoding method. All DNA molecules within a cross-linked complex are barcoded by repeatedly splitting complexes across a 96-well plate, ligating molecules with a unique tag sequence, and pooling all complexes into a single well before repeating the tagging. Because all molecules in a cross-linked complex are covalently attached, they will sort together throughout each round of split-and-pool and will obtain the same series of SPRITE tags, which we refer to as a barcode. The DNA fragments and their associated barcodes are sequenced, and all reads sharing identical barcodes are matched to reconstruct interactions. SPRITE accurately maps pairwise DNA interactions within the nucleus and measures higher-order spatial contacts occurring among up to thousands of simultaneously interacting molecules. Here, we provide a detailed protocol for the experimental steps of SPRITE, including a video ( https://youtu.be/6SdWkBxQGlg ). Furthermore, we provide an automated computational pipeline available on GitHub that allows experimenters to seamlessly generate SPRITE interaction matrices starting with raw fastq files. The protocol takes ~5 d from cell cross-linking to high-throughput sequencing for the experimental steps and 1 d for data processing.


Subject(s)
Cell Nucleus , DNA Barcoding, Taxonomic/methods , DNA , Genomics/methods , Software , Animals , Cell Line , Cell Nucleus/genetics , Cell Nucleus/physiology , DNA/genetics , DNA/metabolism , Female , Genetic Techniques , High-Throughput Nucleotide Sequencing , Humans , Mice
4.
Nat Biotechnol ; 40(1): 64-73, 2022 01.
Article in English | MEDLINE | ID: mdl-34426703

ABSTRACT

Although three-dimensional (3D) genome organization is central to many aspects of nuclear function, it has been difficult to measure at the single-cell level. To address this, we developed 'single-cell split-pool recognition of interactions by tag extension' (scSPRITE). scSPRITE uses split-and-pool barcoding to tag DNA fragments in the same nucleus and their 3D spatial arrangement. Because scSPRITE measures multiway DNA contacts, it generates higher-resolution maps within an individual cell than can be achieved by proximity ligation. We applied scSPRITE to thousands of mouse embryonic stem cells and detected known genome structures, including chromosome territories, active and inactive compartments, and topologically associating domains (TADs) as well as long-range inter-chromosomal structures organized around various nuclear bodies. We observe that these structures exhibit different levels of heterogeneity across the population, with TADs representing dynamic units of genome organization across cells. We expect that scSPRITE will be a critical tool for studying genome structure within heterogeneous populations.


Subject(s)
Cell Nucleus , Genome , Animals , Cell Nucleus/genetics , Chromatin , DNA/genetics , Genome/genetics , Mice , Mouse Embryonic Stem Cells
5.
Cell ; 184(23): 5775-5790.e30, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34739832

ABSTRACT

RNA, DNA, and protein molecules are highly organized within three-dimensional (3D) structures in the nucleus. Although RNA has been proposed to play a role in nuclear organization, exploring this has been challenging because existing methods cannot measure higher-order RNA and DNA contacts within 3D structures. To address this, we developed RNA & DNA SPRITE (RD-SPRITE) to comprehensively map the spatial organization of RNA and DNA. These maps reveal higher-order RNA-chromatin structures associated with three major classes of nuclear function: RNA processing, heterochromatin assembly, and gene regulation. These data demonstrate that hundreds of ncRNAs form high-concentration territories throughout the nucleus, that specific RNAs are required to recruit various regulators into these territories, and that these RNAs can shape long-range DNA contacts, heterochromatin assembly, and gene expression. These results demonstrate a mechanism where RNAs form high-concentration territories, bind to diffusible regulators, and guide them into compartments to regulate essential nuclear functions.


Subject(s)
Cell Nucleus/metabolism , RNA/metabolism , Animals , Cell Nucleus/drug effects , Chromobox Protein Homolog 5/metabolism , Chromosomes/metabolism , DNA/metabolism , DNA, Satellite/metabolism , DNA-Binding Proteins/metabolism , Dactinomycin/pharmacology , Female , Genome , HEK293 Cells , Heterochromatin/metabolism , Humans , Mice , Models, Biological , Multigene Family , RNA Polymerase II/metabolism , RNA Processing, Post-Transcriptional/drug effects , RNA Processing, Post-Transcriptional/genetics , RNA Splicing/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Ribosomal/genetics , RNA-Binding Proteins/metabolism , Transcription, Genetic/drug effects
6.
Nature ; 599(7883): 152-157, 2021 11.
Article in English | MEDLINE | ID: mdl-34646016

ABSTRACT

Molecular switch proteins whose cycling between states is controlled by opposing regulators1,2 are central to biological signal transduction. As switch proteins function within highly connected interaction networks3, the fundamental question arises of how functional specificity is achieved when different processes share common regulators. Here we show that functional specificity of the small GTPase switch protein Gsp1 in Saccharomyces cerevisiae (the homologue of the human protein RAN)4 is linked to differential sensitivity of biological processes to different kinetics of the Gsp1 (RAN) switch cycle. We make 55 targeted point mutations to individual protein interaction interfaces of Gsp1 (RAN) and show through quantitative genetic5 and physical interaction mapping that Gsp1 (RAN) interface perturbations have widespread cellular consequences. Contrary to expectation, the cellular effects of the interface mutations group by their biophysical effects on kinetic parameters of the GTPase switch cycle and not by the targeted interfaces. Instead, we show that interface mutations allosterically tune the GTPase cycle kinetics. These results suggest a model in which protein partner binding, or post-translational modifications at distal sites, could act as allosteric regulators of GTPase switching. Similar mechanisms may underlie regulation by other GTPases, and other biological switches. Furthermore, our integrative platform to determine the quantitative consequences of molecular perturbations may help to explain the effects of disease mutations that target central molecular switches.


Subject(s)
Allosteric Regulation/genetics , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Point Mutation , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae , Binding Sites/genetics , Catalytic Domain/genetics , GTPase-Activating Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanosine Triphosphate/metabolism , Kinetics , Protein Binding/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics
7.
Nature ; 590(7845): 344-350, 2021 02.
Article in English | MEDLINE | ID: mdl-33505024

ABSTRACT

Identifying the relationships between chromosome structures, nuclear bodies, chromatin states and gene expression is an overarching goal of nuclear-organization studies1-4. Because individual cells appear to be highly variable at all these levels5, it is essential to map different modalities in the same cells. Here we report the imaging of 3,660 chromosomal loci in single mouse embryonic stem (ES) cells using DNA seqFISH+, along with 17 chromatin marks and subnuclear structures by sequential immunofluorescence and the expression profile of 70 RNAs. Many loci were invariably associated with immunofluorescence marks in single mouse ES cells. These loci form 'fixed points' in the nuclear organizations of single cells and often appear on the surfaces of nuclear bodies and zones defined by combinatorial chromatin marks. Furthermore, highly expressed genes appear to be pre-positioned to active nuclear zones, independent of bursting dynamics in single cells. Our analysis also uncovered several distinct mouse ES cell subpopulations with characteristic combinatorial chromatin states. Using clonal analysis, we show that the global levels of some chromatin marks, such as H3 trimethylation at lysine 27 (H3K27me3) and macroH2A1 (mH2A1), are heritable over at least 3-4 generations, whereas other marks fluctuate on a faster time scale. This seqFISH+-based spatial multimodal approach can be used to explore nuclear organization and cell states in diverse biological systems.


Subject(s)
Cell Compartmentation/genetics , Cell Nucleus/genetics , Genomics/methods , Mouse Embryonic Stem Cells/cytology , Single-Cell Analysis/methods , Transcriptome/genetics , Animals , Cell Line , Chromatin/genetics , Chromatin/metabolism , Chromosomes, Mammalian/genetics , Clone Cells/cytology , Fluorescent Antibody Technique , Genetic Markers , Histones/metabolism , Lysine/metabolism , Male , Mice , Time Factors
8.
Cell ; 183(5): 1325-1339.e21, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33080218

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses.


Subject(s)
COVID-19/metabolism , Host-Pathogen Interactions , Protein Biosynthesis , RNA Splicing , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , A549 Cells , Animals , COVID-19/virology , Chlorocebus aethiops , HEK293 Cells , Humans , Interferons/metabolism , Protein Transport , RNA, Messenger/metabolism , RNA, Ribosomal, 18S/metabolism , RNA, Small Cytoplasmic/chemistry , RNA, Small Cytoplasmic/metabolism , Signal Recognition Particle/chemistry , Signal Recognition Particle/metabolism , Vero Cells , Viral Nonstructural Proteins/chemistry
9.
Science ; 366(6468): 1024-1028, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31754004

ABSTRACT

Sensing and responding to signals is a fundamental ability of living systems, but despite substantial progress in the computational design of new protein structures, there is no general approach for engineering arbitrary new protein sensors. Here, we describe a generalizable computational strategy for designing sensor-actuator proteins by building binding sites de novo into heterodimeric protein-protein interfaces and coupling ligand sensing to modular actuation through split reporters. Using this approach, we designed protein sensors that respond to farnesyl pyrophosphate, a metabolic intermediate in the production of valuable compounds. The sensors are functional in vitro and in cells, and the crystal structure of the engineered binding site closely matches the design model. Our computational design strategy opens broad avenues to link biological outputs to new signals.


Subject(s)
Polyisoprenyl Phosphates/metabolism , Protein Engineering , Protein Multimerization , Proteins/chemistry , Sesquiterpenes/metabolism , Ankyrin Repeat , Binding Sites , Biosensing Techniques , Computational Biology , Computer Simulation , Crystallography, X-Ray , Ligands , Maltose-Binding Proteins/chemistry , Maltose-Binding Proteins/metabolism , Models, Molecular , Proteins/genetics , Proteins/metabolism
10.
Cell ; 174(3): 744-757.e24, 2018 07 26.
Article in English | MEDLINE | ID: mdl-29887377

ABSTRACT

Eukaryotic genomes are packaged into a 3-dimensional structure in the nucleus. Current methods for studying genome-wide structure are based on proximity ligation. However, this approach can fail to detect known structures, such as interactions with nuclear bodies, because these DNA regions can be too far apart to directly ligate. Accordingly, our overall understanding of genome organization remains incomplete. Here, we develop split-pool recognition of interactions by tag extension (SPRITE), a method that enables genome-wide detection of higher-order interactions within the nucleus. Using SPRITE, we recapitulate known structures identified by proximity ligation and identify additional interactions occurring across larger distances, including two hubs of inter-chromosomal interactions that are arranged around the nucleolus and nuclear speckles. We show that a substantial fraction of the genome exhibits preferential organization relative to these nuclear bodies. Our results generate a global model whereby nuclear bodies act as inter-chromosomal hubs that shape the overall packaging of DNA in the nucleus.


Subject(s)
Cell Nucleus/ultrastructure , Chromosome Mapping/methods , Chromosomes/physiology , Cell Nucleolus , Cell Nucleus/physiology , Chromosomes/genetics , DNA/physiology , Eukaryota , Genome/genetics , Genome/physiology , Humans , Structure-Activity Relationship
11.
Methods Mol Biol ; 1561: 173-187, 2017.
Article in English | MEDLINE | ID: mdl-28236238

ABSTRACT

Protein-protein interactions play critical roles in essentially every cellular process. These interactions are often mediated by protein interaction domains that enable proteins to recognize their interaction partners, often by binding to short peptide motifs. For example, PDZ domains, which are among the most common protein interaction domains in the human proteome, recognize specific linear peptide sequences that are often at the C-terminus of other proteins. Determining the set of peptide sequences that a protein interaction domain binds, or it's "peptide specificity," is crucial for understanding its cellular function, and predicting how mutations impact peptide specificity is important for elucidating the mechanisms underlying human diseases. Moreover, engineering novel cellular functions for synthetic biology applications, such as the biosynthesis of biofuels or drugs, requires the design of protein interaction specificity to avoid crosstalk with native metabolic and signaling pathways. The ability to accurately predict and design protein-peptide interaction specificity is therefore critical for understanding and engineering biological function. One approach that has recently been employed toward accomplishing this goal is computational protein design. This chapter provides an overview of recent methodological advances in computational protein design and highlights examples of how these advances can enable increased accuracy in predicting and designing peptide specificity.


Subject(s)
Computational Biology/methods , Drug Design , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Interaction Mapping/methods , Proteins/metabolism , Humans , Models, Molecular , PDZ Domains , Protein Binding , Proteins/chemistry , Substrate Specificity
12.
Nat Rev Mol Cell Biol ; 17(12): 756-770, 2016 12.
Article in English | MEDLINE | ID: mdl-27780979

ABSTRACT

Over the past decade, it has become clear that mammalian genomes encode thousands of long non-coding RNAs (lncRNAs), many of which are now implicated in diverse biological processes. Recent work studying the molecular mechanisms of several key examples - including Xist, which orchestrates X chromosome inactivation - has provided new insights into how lncRNAs can control cellular functions by acting in the nucleus. Here we discuss emerging mechanistic insights into how lncRNAs can regulate gene expression by coordinating regulatory proteins, localizing to target loci and shaping three-dimensional (3D) nuclear organization. We explore these principles to highlight biological challenges in gene regulation, in which lncRNAs are well-suited to perform roles that cannot be carried out by DNA elements or protein regulators alone, such as acting as spatial amplifiers of regulatory signals in the nucleus.


Subject(s)
Cell Nucleus/ultrastructure , Gene Expression Regulation , RNA, Long Noncoding/physiology , Animals , Cell Nucleus/genetics , Gene Expression , Humans , RNA Transport
13.
Science ; 354(6311): 468-472, 2016 10 28.
Article in English | MEDLINE | ID: mdl-27492478

ABSTRACT

The Xist long noncoding RNA orchestrates X chromosome inactivation, a process that entails chromosome-wide silencing and remodeling of the three-dimensional (3D) structure of the X chromosome. Yet, it remains unclear whether these changes in nuclear structure are mediated by Xist and whether they are required for silencing. Here, we show that Xist directly interacts with the Lamin B receptor, an integral component of the nuclear lamina, and that this interaction is required for Xist-mediated silencing by recruiting the inactive X to the nuclear lamina and by doing so enables Xist to spread to actively transcribed genes across the X. Our results demonstrate that lamina recruitment changes the 3D structure of DNA, enabling Xist and its silencing proteins to spread across the X to silence transcription.


Subject(s)
Gene Silencing , Nuclear Lamina/metabolism , RNA, Long Noncoding/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , X Chromosome Inactivation/genetics , X Chromosome/metabolism , Animals , Cell Line , Female , Mice , RNA, Long Noncoding/genetics , Transcription, Genetic , Transcriptional Activation , Lamin B Receptor
14.
PLoS One ; 10(9): e0130433, 2015.
Article in English | MEDLINE | ID: mdl-26335248

ABSTRACT

The development and validation of computational macromolecular modeling and design methods depend on suitable benchmark datasets and informative metrics for comparing protocols. In addition, if a method is intended to be adopted broadly in diverse biological applications, there needs to be information on appropriate parameters for each protocol, as well as metrics describing the expected accuracy compared to experimental data. In certain disciplines, there exist established benchmarks and public resources where experts in a particular methodology are encouraged to supply their most efficient implementation of each particular benchmark. We aim to provide such a resource for protocols in macromolecular modeling and design. We present a freely accessible web resource (https://kortemmelab.ucsf.edu/benchmarks) to guide the development of protocols for protein modeling and design. The site provides benchmark datasets and metrics to compare the performance of a variety of modeling protocols using different computational sampling methods and energy functions, providing a "best practice" set of parameters for each method. Each benchmark has an associated downloadable benchmark capture archive containing the input files, analysis scripts, and tutorials for running the benchmark. The captures may be run with any suitable modeling method; we supply command lines for running the benchmarks using the Rosetta software suite. We have compiled initial benchmarks for the resource spanning three key areas: prediction of energetic effects of mutations, protein design, and protein structure prediction, each with associated state-of-the-art modeling protocols. With the help of the wider macromolecular modeling community, we hope to expand the variety of benchmarks included on the website and continue to evaluate new iterations of current methods as they become available.


Subject(s)
Benchmarking , Datasets as Topic , Internet , Models, Molecular , Proteins/chemistry , Amino Acids/chemistry , Evolution, Chemical , Mutation , Proteins/genetics , Thermodynamics
15.
PLoS Comput Biol ; 11(9): e1004335, 2015.
Article in English | MEDLINE | ID: mdl-26397464

ABSTRACT

Interactions between small molecules and proteins play critical roles in regulating and facilitating diverse biological functions, yet our ability to accurately re-engineer the specificity of these interactions using computational approaches has been limited. One main difficulty, in addition to inaccuracies in energy functions, is the exquisite sensitivity of protein-ligand interactions to subtle conformational changes, coupled with the computational problem of sampling the large conformational search space of degrees of freedom of ligands, amino acid side chains, and the protein backbone. Here, we describe two benchmarks for evaluating the accuracy of computational approaches for re-engineering protein-ligand interactions: (i) prediction of enzyme specificity altering mutations and (ii) prediction of sequence tolerance in ligand binding sites. After finding that current state-of-the-art "fixed backbone" design methods perform poorly on these tests, we develop a new "coupled moves" design method in the program Rosetta that couples changes to protein sequence with alterations in both protein side-chain and protein backbone conformations, and allows for changes in ligand rigid-body and torsion degrees of freedom. We show significantly increased accuracy in both predicting ligand specificity altering mutations and binding site sequences. These methodological improvements should be useful for many applications of protein-ligand design. The approach also provides insights into the role of subtle conformational adjustments that enable functional changes not only in engineering applications but also in natural protein evolution.


Subject(s)
Binding Sites , Computational Biology/methods , Protein Conformation , Proteins/chemistry , Proteins/metabolism , Amino Acid Sequence , Ligands , Models, Molecular , Molecular Sequence Data , Pliability , Substrate Specificity
16.
Proc Natl Acad Sci U S A ; 111(43): 15426-31, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25313039

ABSTRACT

Reengineering protein-protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of "second-site suppressors," where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein-protein interfaces. To extend this approach, it would be advantageous to be able to "transplant" existing engineered and experimentally validated specificity changes to other homologous protein-protein complexes. Here, we test this strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain-peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein-protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. Although the context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein-protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context.


Subject(s)
Dystrophin-Associated Proteins/chemistry , Dystrophin-Associated Proteins/genetics , Protein Engineering , Epistasis, Genetic , Models, Molecular , Mutation/genetics , Nitric Oxide Synthase Type I/chemistry , Nitric Oxide Synthase Type I/metabolism , PDZ Domains , Thermodynamics
17.
PLoS Comput Biol ; 9(11): e1003313, 2013.
Article in English | MEDLINE | ID: mdl-24244128

ABSTRACT

Amino acid covariation, where the identities of amino acids at different sequence positions are correlated, is a hallmark of naturally occurring proteins. This covariation can arise from multiple factors, including selective pressures for maintaining protein structure, requirements imposed by a specific function, or from phylogenetic sampling bias. Here we employed flexible backbone computational protein design to quantify the extent to which protein structure has constrained amino acid covariation for 40 diverse protein domains. We find significant similarities between the amino acid covariation in alignments of natural protein sequences and sequences optimized for their structures by computational protein design methods. These results indicate that the structural constraints imposed by protein architecture play a dominant role in shaping amino acid covariation and that computational protein design methods can capture these effects. We also find that the similarity between natural and designed covariation is sensitive to the magnitude and mechanism of backbone flexibility used in computational protein design. Our results thus highlight the necessity of including backbone flexibility to correctly model precise details of correlated amino acid changes and give insights into the pressures underlying these correlations.


Subject(s)
Amino Acids/chemistry , Computational Biology/methods , Protein Structure, Tertiary , Proteins/chemistry , Amino Acid Sequence , Evolution, Molecular , Models, Molecular , Molecular Sequence Data , Proteins/metabolism
18.
PeerJ ; 1: e211, 2013.
Article in English | MEDLINE | ID: mdl-24255821

ABSTRACT

Computational protein design attempts to create protein sequences that fold stably into pre-specified structures. Here we compare alignments of designed proteins to alignments of natural proteins and assess how closely designed sequences recapitulate patterns of sequence variation found in natural protein sequences. We design proteins using RosettaDesign, and we evaluate both fixed-backbone designs and variable-backbone designs with different amounts of backbone flexibility. We find that proteins designed with a fixed backbone tend to underestimate the amount of site variability observed in natural proteins while proteins designed with an intermediate amount of backbone flexibility result in more realistic site variability. Further, the correlation between solvent exposure and site variability in designed proteins is lower than that in natural proteins. This finding suggests that site variability is too uniform across different solvent exposure states (i.e., buried residues are too variable or exposed residues too conserved). When comparing the amino acid frequencies in the designed proteins with those in natural proteins we find that in the designed proteins hydrophobic residues are underrepresented in the core. From these results we conclude that intermediate backbone flexibility during design results in more accurate protein design and that either scoring functions or backbone sampling methods require further improvement to accurately replicate structural constraints on site variability.

19.
Methods Enzymol ; 523: 61-85, 2013.
Article in English | MEDLINE | ID: mdl-23422426

ABSTRACT

Sampling alternative conformations is key to understanding how proteins work and engineering them for new functions. However, accurately characterizing and modeling protein conformational ensembles remain experimentally and computationally challenging. These challenges must be met before protein conformational heterogeneity can be exploited in protein engineering and design. Here, as a stepping stone, we describe methods to detect alternative conformations in proteins and strategies to model these near-native conformational changes based on backrub-type Monte Carlo moves in Rosetta. We illustrate how Rosetta simulations that apply backrub moves improve modeling of point mutant side-chain conformations, native side-chain conformational heterogeneity, functional conformational changes, tolerated sequence space, protein interaction specificity, and amino acid covariation across protein-protein interfaces. We include relevant Rosetta command lines and RosettaScripts to encourage the application of these types of simulations to other systems. Our work highlights that critical scoring and sampling improvements will be necessary to approximate conformational landscapes. Challenges for the future development of these methods include modeling conformational changes that propagate away from designed mutation sites and modulating backbone flexibility to predictively design functionally important conformational heterogeneity.


Subject(s)
Computational Biology/methods , Proteins/chemistry , Monte Carlo Method , Protein Conformation
20.
PLoS Biol ; 8(8): e1000450, 2010 Aug 10.
Article in English | MEDLINE | ID: mdl-20711477

ABSTRACT

Aberrant protein aggregation is a hallmark of many age-related diseases, yet little is known about whether proteins aggregate with age in a non-disease setting. Using a systematic proteomics approach, we identified several hundred proteins that become more insoluble with age in the multicellular organism Caenorhabditis elegans. These proteins are predicted to be significantly enriched in beta-sheets, which promote disease protein aggregation. Strikingly, these insoluble proteins are highly over-represented in aggregates found in human neurodegeneration. We examined several of these proteins in vivo and confirmed their propensity to aggregate with age. Different proteins aggregated in different tissues and cellular compartments. Protein insolubility and aggregation were significantly delayed or even halted by reduced insulin/IGF-1-signaling, which also slows aging. We found a significant overlap between proteins that become insoluble and proteins that influence lifespan and/or polyglutamine-repeat aggregation. Moreover, overexpressing one aggregating protein enhanced polyglutamine-repeat pathology. Together our findings indicate that widespread protein insolubility and aggregation is an inherent part of aging and that it may influence both lifespan and neurodegenerative disease.


Subject(s)
Aging/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/physiology , Huntington Disease/physiopathology , Aging/physiology , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Disease Models, Animal , Humans , Huntington Disease/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/physiopathology , Proteins/genetics , Proteins/metabolism , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...