Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
BMC Biol ; 22(1): 14, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273313

ABSTRACT

BACKGROUND: Mosquito borne viruses, such as dengue, Zika, yellow fever and Chikungunya, cause millions of infections every year. These viruses are mostly transmitted by two urban-adapted mosquito species, Aedes aegypti and Aedes albopictus. Although mechanistic understanding remains largely unknown, Aedes mosquitoes may have unique adaptations that lower the impact of viral infection. Recently, we reported the identification of an Aedes specific double-stranded RNA binding protein (dsRBP), named Loqs2, that is involved in the control of infection by dengue and Zika viruses in mosquitoes. Preliminary analyses suggested that the loqs2 gene is a paralog of loquacious (loqs) and r2d2, two co-factors of the RNA interference (RNAi) pathway, a major antiviral mechanism in insects. RESULTS: Here we analyzed the origin and evolution of loqs2. Our data suggest that loqs2 originated from two independent duplications of the first double-stranded RNA binding domain of loqs that occurred before the origin of the Aedes Stegomyia subgenus, around 31 million years ago. We show that the loqs2 gene is evolving under relaxed purifying selection at a faster pace than loqs, with evidence of neofunctionalization driven by positive selection. Accordingly, we observed that Loqs2 is localized mainly in the nucleus, different from R2D2 and both isoforms of Loqs that are cytoplasmic. In contrast to r2d2 and loqs, loqs2 expression is stage- and tissue-specific, restricted mostly to reproductive tissues in adult Ae. aegypti and Ae. albopictus. Transgenic mosquitoes engineered to express loqs2 ubiquitously undergo developmental arrest at larval stages that correlates with massive dysregulation of gene expression without major effects on microRNAs or other endogenous small RNAs, classically associated with RNA interference. CONCLUSIONS: Our results uncover the peculiar origin and neofunctionalization of loqs2 driven by positive selection. This study shows an example of unique adaptations in Aedes mosquitoes that could ultimately help explain their effectiveness as virus vectors.


Subject(s)
Aedes , Dengue , Zika Virus Infection , Zika Virus , Animals , Aedes/genetics , Carrier Proteins/genetics , Mosquito Vectors/genetics , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Zika Virus/genetics , Zika Virus/metabolism
2.
Virus Evol ; 9(2): vead041, 2023.
Article in English | MEDLINE | ID: mdl-37636319

ABSTRACT

The Asian bush mosquito Aedes japonicus is rapidly invading North America and Europe. Due to its potential to transmit multiple pathogenic arthropod-borne (arbo)viruses including Zika virus, West Nile virus, and chikungunya virus, it is important to understand the biology of this vector mosquito in more detail. In addition to arboviruses, mosquitoes can also carry insect-specific viruses that are receiving increasing attention due to their potential effects on host physiology and arbovirus transmission. In this study, we characterized the collection of viruses, referred to as the virome, circulating in Ae. japonicus populations in the Netherlands and France. Applying a small RNA-based metagenomic approach to Ae. japonicus, we uncovered a distinct group of viruses present in samples from both the Netherlands and France. These included one known virus, Ae. japonicus narnavirus 1 (AejapNV1), and three new virus species that we named Ae. japonicus totivirus 1 (AejapTV1), Ae. japonicus anphevirus 1 (AejapAV1) and Ae. japonicus bunyavirus 1 (AejapBV1). We also discovered sequences that were presumably derived from two additional novel viruses: Ae. japonicus bunyavirus 2 (AejapBV2) and Ae. japonicus rhabdovirus 1 (AejapRV1). All six viruses induced strong RNA interference responses, including the production of twenty-one nucleotide-sized small interfering RNAs, a signature of active replication in the host. Notably, AejapBV1 and AejapBV2 belong to different viral families; however, no RNA-dependent RNA polymerase sequence has been found for AejapBV2. Intriguingly, our small RNA-based approach identified an ∼1-kb long ambigrammatic RNA that is associated with AejapNV1 as a secondary segment but showed no similarity to any sequence in public databases. We confirmed the presence of AejapNV1 primary and secondary segments, AejapTV1, AejapAV1, and AejapBV1 by reverse transcriptase polymerase chain reaction (PCR) in wild-caught Ae. japonicus mosquitoes. AejapNV1 and AejapTV1 were found at high prevalence (87-100 per cent) in adult females, adult males, and larvae. Using a small RNA-based, sequence-independent metagenomic strategy, we uncovered a conserved and prevalent virome among Ae. japonicus mosquito populations. The high prevalence of AejapNV1 and AejapTV1 across all tested mosquito life stages suggests that these viruses are intimately associated with Ae. japonicus.

3.
Nat Microbiol ; 8(1): 135-149, 2023 01.
Article in English | MEDLINE | ID: mdl-36604511

ABSTRACT

Aedes aegypti and A. albopictus mosquitoes are the main vectors for dengue virus (DENV) and other arboviruses, including Zika virus (ZIKV). Understanding the factors that affect transmission of arboviruses from mosquitoes to humans is a priority because it could inform public health and targeted interventions. Reasoning that interactions among viruses in the vector insect might affect transmission, we analysed the viromes of 815 urban Aedes mosquitoes collected from 12 countries worldwide. Two mosquito-specific viruses, Phasi Charoen-like virus (PCLV) and Humaita Tubiacanga virus (HTV), were the most abundant in A. aegypti worldwide. Spatiotemporal analyses of virus circulation in an endemic urban area revealed a 200% increase in chances of having DENV in wild A. aegypti mosquitoes when both HTV and PCLV were present. Using a mouse model in the laboratory, we showed that the presence of HTV and PCLV increased the ability of mosquitoes to transmit DENV and ZIKV to a vertebrate host. By transcriptomic analysis, we found that in DENV-infected mosquitoes, HTV and PCLV block the downregulation of histone H4, which we identify as an important proviral host factor in vivo.


Subject(s)
Aedes , Arboviruses , Dengue Virus , Dengue , Insect Viruses , RNA Viruses , Zika Virus Infection , Zika Virus , Animals , Humans , Zika Virus/genetics , Insect Viruses/physiology , Dengue Virus/genetics , Mosquito Vectors , Arboviruses/genetics
4.
Cell Rep ; 39(12): 110976, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35732126

ABSTRACT

dsRNA sensing triggers antiviral responses against RNA and DNA viruses in diverse eukaryotes. In Drosophila, Invertebrate iridescent virus 6 (IIV-6), a large DNA virus, triggers production of small interfering RNAs (siRNAs) by the dsRNA sensor Dicer-2. Here, we show that host RNA polymerase II (RNAPII) bidirectionally transcribes specific AT-rich regions of the IIV-6 DNA genome to generate dsRNA. Both replicative and naked IIV-6 genomes trigger production of dsRNA in Drosophila cells, implying direct sensing of invading DNA. Loquacious-PD, a Dicer-2 co-factor essential for the biogenesis of endogenous siRNAs, is dispensable for processing of IIV-6-derived dsRNAs, which suggests that they are distinct. Consistent with this finding, inhibition of the RNAPII co-factor P-TEFb affects the synthesis of endogenous, but not virus-derived, dsRNA. Altogether, our results suggest that a non-canonical RNAPII complex recognizes invading viral DNA to synthesize virus-derived dsRNA, which activates the antiviral siRNA pathway in Drosophila.


Subject(s)
DNA, Viral , Drosophila , Animals , Antiviral Agents , DNA Viruses/genetics , Drosophila/metabolism , Iridovirus , RNA Interference , RNA Polymerase II/metabolism , RNA, Double-Stranded/genetics , RNA, Small Interfering/metabolism , RNA, Viral/metabolism
5.
Commun Biol ; 5(1): 210, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35256751

ABSTRACT

Aedes albopictus is a major vector of arboviruses. Better understanding of its sex determination is crucial for developing mosquito control tools, especially genetic sexing strains. In Aedes aegypti, Nix is the primary gene responsible for masculinization and Nix-expressing genetic females develop into fertile, albeit flightless, males. In Ae. albopictus, Nix has also been implicated in masculinization but its role remains to be further characterized. In this work, we establish Ae. albopictus transgenic lines ectopically expressing Nix. Several are composed exclusively of genetic females, with transgenic individuals being phenotypic and functional males due to the expression of the Nix transgene. Their reproductive fitness is marginally impaired, while their flight performance is similar to controls. Overall, our results show that Nix is sufficient for full masculinization in Ae. albopictus. Moreover, the transgene construct contains a fluorescence marker allowing efficient automated sex sorting. Consequently, such strains constitute valuable sexing strains for genetic control.


Subject(s)
Aedes , Aedes/genetics , Animals , Animals, Genetically Modified , Female , Humans , Male , Mosquito Control/methods , Mosquito Vectors/genetics
6.
Genomics ; 113(4): 2290-2303, 2021 07.
Article in English | MEDLINE | ID: mdl-34044154

ABSTRACT

Varroa destructor is an ectoparasite mite that attacks bees leading to colony disorders worldwide. microRNAs (miRNAs) are key molecules used by eukaryotes to post-transcriptional control of gene expression. Nevertheless, still lack information aboutV. destructor miRNAs and its regulatory networks. Here, we used an integrative strategy to characterize the miRNAs in the V. destructor mite. We identified 310 precursors that give rise to 500 mature miRNAs, which 257 are likely mite-specific elements. miRNAs showed canonical length ranging between 18 and 25 nucleotides and 5' uracil preference. Top 10 elements concentrated over 80% of total miRNA expression, with bantam alone representing ~50%. We also detected non-templated bases in precursor-derived small RNAs, indicative of miRNA post-transcriptional regulatory mechanisms. Finally, we note that conserved miRNAs control similar processes in different organisms, suggesting a conservative role. Altogether, our findings contribute to the better understanding of the mite biology that can assist future studies on varroosis control.


Subject(s)
MicroRNAs , Varroidae , Animals , Bees/parasitology , Gene Expression Regulation , Genome , MicroRNAs/genetics , Varroidae/genetics
7.
Curr Opin Virol ; 49: 7-12, 2021 08.
Article in English | MEDLINE | ID: mdl-33991759

ABSTRACT

Mosquitoes are the major vectors for arthropod-borne viruses (arboviruses) of medical importance. Aedes aegypti and A. albopictus are the most prolific and widespread mosquito vectors being responsible for global transmission of dengue, Zika and Chikungunya viruses. Characterizing the collection of viruses circulating in mosquitoes, the virome, has long been of special interest. In addition to arboviruses, mosquitoes carry insect-specific viruses (ISVs) that do not directly infect vertebrates. Mounting evidence indicates that ISVs interact with arboviruses and may affect mosquito vector competence. Here, we review our current knowledge about the virome of vector mosquitoes and discuss the challenges for the field that may lead to novel strategies to prevent outbreaks of arboviruses.


Subject(s)
Arboviruses/physiology , Culicidae/virology , Insect Viruses/physiology , Mosquito Vectors/virology , Virome , Animals , Arbovirus Infections/transmission , Arbovirus Infections/virology , Arboviruses/classification , Host Microbial Interactions , Humans , Insect Viruses/classification , Microbial Interactions , Phylogeny
8.
ASN Neuro ; 13: 17590914211009857, 2021.
Article in English | MEDLINE | ID: mdl-33906482

ABSTRACT

Huntington's disease (HD) is a genetic disorder marked by transcriptional alterations that result in neuronal impairment and death. MicroRNAs (miRNAs) are non-coding RNAs involved in post-transcriptional regulation and fine-tuning of gene expression. Several studies identified altered miRNA expression in HD and other neurodegenerative diseases, however their roles in early stages of HD remain elusive. Here, we deep-sequenced miRNAs from the striatum of the HD mouse model, BACHD, at the age of 2 and 8 months, representing the pre-symptomatic and symptomatic stages of the disease. Our results show that 44 and 26 miRNAs were differentially expressed in 2- and 8-month-old BACHD mice, respectively, as compared to wild-type controls. Over-representation analysis suggested that miRNAs up-regulated in 2-month-old mice control the expression of genes crucial for PI3K-Akt and mTOR cell signaling pathways. Conversely, miRNAs regulating genes involved in neuronal disorders were down-regulated in 2-month-old BACHD mice. Interestingly, primary striatal neurons treated with anti-miRs targeting two up-regulated miRNAs, miR-449c-5p and miR-146b-5p, showed higher levels of cell death. Therefore, our results suggest that the miRNAs altered in 2-month-old BACHD mice regulate genes involved in the promotion of cell survival. Notably, over-representation suggested that targets of differentially expressed miRNAs at the age of 8 months were not significantly enriched for the same pathways. Together, our data shed light on the role of miRNAs in the initial stages of HD, suggesting a neuroprotective role as an attempt to maintain or reestablish cellular homeostasis.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Huntington Disease/genetics , MicroRNAs/biosynthesis , MicroRNAs/genetics , Neuroprotection/physiology , Prodromal Symptoms , Animals , Cells, Cultured , Female , Huntington Disease/metabolism , Huntington Disease/prevention & control , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Sequence Analysis, RNA/methods , Up-Regulation/physiology
9.
An Acad Bras Cienc ; 91 Suppl 3: e20190122, 2019.
Article in English | MEDLINE | ID: mdl-31166476

ABSTRACT

Insects are the most diverse group of animals. They can be infected by an extraordinary diversity of viruses. Among them, arthropod-borne viruses (arboviruses) can be transmitted to humans. High-throughput sequencing of small RNAs from insects provides insight into their virome, which may help understand the dynamics of vector borne infectious diseases. Furthermore, investigating the mechanisms that restrict viral infections in insects points to genetic innovations that may inspire novel antiviral strategies.


Subject(s)
Biodiversity , Genome, Viral/genetics , Insect Vectors/virology , Insect Viruses/classification , RNA Viruses/classification , Animals , Insect Vectors/classification , Insect Viruses/genetics , RNA Viruses/genetics
10.
Nat Microbiol ; 3(12): 1385-1393, 2018 12.
Article in English | MEDLINE | ID: mdl-30374169

ABSTRACT

Dengue virus (DENV) is an arbovirus transmitted to humans by Aedes mosquitoes1. In the insect vector, the small interfering RNA (siRNA) pathway is an important antiviral mechanism against DENV2-5. However, it remains unclear when and where the siRNA pathway acts during the virus cycle. Here, we show that the siRNA pathway fails to efficiently silence DENV in the midgut of Aedes aegypti although it is essential to restrict systemic replication. Accumulation of DENV-derived siRNAs in the midgut reveals that impaired silencing results from a defect downstream of small RNA biogenesis. Notably, silencing triggered by endogenous and exogenous dsRNAs remained effective in the midgut where known components of the siRNA pathway, including the double-stranded RNA (dsRNA)-binding proteins Loquacious and r2d2, had normal expression levels. We identified an Aedes-specific paralogue of loquacious and r2d2, hereafter named loqs2, which is not expressed in the midgut. Loqs2 interacts with Loquacious and r2d2 and is required to control systemic replication of DENV and also Zika virus. Furthermore, ectopic expression of Loqs2 in the midgut of transgenic mosquitoes is sufficient to restrict DENV replication and dissemination. Together, our data reveal a mechanism of tissue-specific regulation of the mosquito siRNA pathway controlled by Loqs2.


Subject(s)
Aedes/metabolism , Carrier Proteins/metabolism , Dengue Virus/metabolism , Ectopic Gene Expression , RNA, Double-Stranded/metabolism , RNA, Small Interfering/metabolism , RNA-Binding Proteins/metabolism , Aedes/genetics , Aedes/virology , Animals , Animals, Genetically Modified , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Carrier Proteins/genetics , DNA Replication , Dengue/virology , Dengue Virus/drug effects , Dengue Virus/genetics , Dengue Virus/pathogenicity , Drosophila Proteins , Female , Gastrointestinal Tract/virology , Gene Silencing , Host-Pathogen Interactions , Mosquito Vectors/virology , RNA, Viral/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/pharmacology , Virus Replication , Zika Virus/metabolism
11.
Pharmacol Res ; 115: 179-191, 2017 01.
Article in English | MEDLINE | ID: mdl-27872019

ABSTRACT

Glutamate is the most important excitatory neurotransmitter of the mammalian central nervous system (CNS), playing an important role in memory, synaptic plasticity and neuronal development. However, glutamate overstimulation is also implicated in neuronal cell death. There are two major types of glutamate receptors: ionotropic and metabotropic. Thus far, eight metabotropic glutamate receptors (mGluRs) subtypes have been characterized and are divided into three subgroups based on sequence homology and cell signaling activation. mGluRs activate a wide variety of cell signaling pathways by G protein-coupled pathways or via G protein-independent cell signaling activation. Moreover, these receptors exhibit widespread distribution in the CNS and are implicated in several neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). This review aims to discuss the latest updates concerning mGluRs and their role in neurodegenerative diseases. mGluRs agonists and antagonists as well as positive and negative allosteric modulators have been tested in several animal models of neurodegenerative diseases. Furthermore, mGluR knockout mouse models have been crossed to mouse models of AD and HD, providing important data about mGluRs role in neurodegenerative disease progression. Thus, mGluRs constitute potential therapeutic targets for the development of therapies to treat neurodegenerative diseases.


Subject(s)
Neurodegenerative Diseases/metabolism , Receptors, Metabotropic Glutamate/metabolism , Animals , Central Nervous System/metabolism , Glutamic Acid/metabolism , Humans , Neurotransmitter Agents/metabolism , Signal Transduction/physiology
12.
Parasit Vectors ; 8: 349, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26112833

ABSTRACT

BACKGROUND: The ubiquitination process can be reversed by deubiquitinating enzymes (DUBs). These proteases are involved in ubiquitin processing, in the recovery of modified ubiquitin trapped in inactive forms, and in the recycling of ubiquitin monomers from polyubiquitinated chains. The diversity of DUB functions is illustrated by their number and variety of their catalytic domains with specific 3D architectures. DUBs can be divided into five subclasses: ubiquitin C-terminal hydrolases (UCHs), ubiquitin-specific proteases (USPs or UBPs), ovarian tumour proteases (OTUs), Machado-Joseph disease proteases (MJDs) and JAB1/MPN/Mov34 metalloenzymes (JAMMs). METHODS: Considering the role that the ubiquitin-proteasome system has been shown to play during the development of Schistosoma mansoni, our main goal was to identify and characterize SmUSPs. Here, we showed the identification of putative ubiquitin-specific proteases using bioinformatic approaches. We also evaluated the gene expression profile of representative USP family members using qRT-PCR. RESULTS: We reported 17 USP family members in S. mansoni that present a conservation of UCH domains. Furthermore, the putative SmUSP transcripts analysed were detected in all investigated stages, showing distinct expression during S. mansoni development. The SmUSPs exhibiting high expression profiles were SmUSP7, SmUSP8, SmUSP9x and SmUSP24. CONCLUSION: S. mansoni USPs showed changes in expression levels for different life cycle stages indicating their involvement in cellular processes required for S. mansoni development. These data will serve as a basis for future functional studies of USPs in this parasite.


Subject(s)
Helminth Proteins/genetics , Schistosoma mansoni/enzymology , Schistosoma mansoni/growth & development , Ubiquitin-Specific Proteases/genetics , Amino Acid Sequence , Animals , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Helminth Proteins/chemistry , Helminth Proteins/metabolism , Life Cycle Stages , Molecular Sequence Data , Multigene Family , Phylogeny , Schistosoma mansoni/chemistry , Schistosoma mansoni/genetics , Sequence Alignment , Ubiquitin-Specific Proteases/chemistry , Ubiquitin-Specific Proteases/metabolism
13.
Parasitol Int ; 62(2): 199-207, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23313772

ABSTRACT

NEDD8 is an ubiquitin-like molecule that covalently binds to target proteins through an enzymatic cascade analogous to ubiquitylation. This modifier is known to bind to p53 and p73, as well as all Cullin family proteins, which are essential components of Skp1/Cul-1/F-box protein (SCF)-like Ub ligase complexes. Here, we focused on a genomic analysis of the genes involved in the NEDD8 conjugation pathway in Schistosoma mansoni. The results revealed seven genes related to NEDD8 conjugation that are conserved in Schistosoma japonicum, Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens. We performed quantitative RT-PCR (qRT-PCR), which showed differential profiles for Smnedd8, Smapp1, Smuba3, Smube2f, Smdcn1, Smrbx and Smsenp8 throughout the life cycle of S. mansoni. Upregulation was observed in 3-day-old schistosomula and adult worms for all analysed genes. We also analysed the transcription levels of Cullin family members Smp63 and Smp73, and observed upregulation in early schistosomula, while cercariae and adult worms showed expression levels similar to one another. Taken together, these results suggest that the NEDDylation/DeNEDDylation pathway controls important cellular regulators during worm development from cercariae to schistosomula and, finally, to adult.


Subject(s)
Cullin Proteins/metabolism , Protein Processing, Post-Translational , Schistosoma mansoni/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitins/genetics , Amino Acid Sequence , Animals , Biomphalaria , Cullin Proteins/genetics , Gene Expression Regulation , Genomics , Helminth Proteins/genetics , Helminth Proteins/metabolism , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Phylogeny , Protein Structure, Tertiary , RNA, Helminth/genetics , Schistosoma mansoni/enzymology , Schistosoma mansoni/genetics , Schistosoma mansoni/growth & development , Schistosomiasis mansoni/parasitology , Sequence Alignment , Transcriptome , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligase Complexes/genetics , Ubiquitin-Protein Ligase Complexes/metabolism , Ubiquitins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...