Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
NPJ Syst Biol Appl ; 9(1): 24, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37286693

ABSTRACT

Adipocyte signaling, normally and in type 2 diabetes, is far from fully understood. We have earlier developed detailed dynamic mathematical models for several well-studied, partially overlapping, signaling pathways in adipocytes. Still, these models only cover a fraction of the total cellular response. For a broader coverage of the response, large-scale phosphoproteomic data and systems level knowledge on protein interactions are key. However, methods to combine detailed dynamic models with large-scale data, using information about the confidence of included interactions, are lacking. We have developed a method to first establish a core model by connecting existing models of adipocyte cellular signaling for: (1) lipolysis and fatty acid release, (2) glucose uptake, and (3) the release of adiponectin. Next, we use publicly available phosphoproteome data for the insulin response in adipocytes together with prior knowledge on protein interactions, to identify phosphosites downstream of the core model. In a parallel pairwise approach with low computation time, we test whether identified phosphosites can be added to the model. We iteratively collect accepted additions into layers and continue the search for phosphosites downstream of these added layers. For the first 30 layers with the highest confidence (311 added phosphosites), the model predicts independent data well (70-90% correct), and the predictive capability gradually decreases when we add layers of decreasing confidence. In total, 57 layers (3059 phosphosites) can be added to the model with predictive ability kept. Finally, our large-scale, layered model enables dynamic simulations of systems-wide alterations in adipocytes in type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/metabolism , Signal Transduction/physiology , Insulin , Adipocytes/metabolism , Lipolysis/physiology
2.
Life Sci Alliance ; 6(4)2023 04.
Article in English | MEDLINE | ID: mdl-36717246

ABSTRACT

The adult heart develops hypertrophy to reduce ventricular wall stress and maintain cardiac function in response to an increased workload. Although pathological hypertrophy generally progresses to heart failure, physiological hypertrophy may be cardioprotective. Cardiac-specific overexpression of the lipid-droplet protein perilipin 5 (Plin5) promotes cardiac hypertrophy, but it is unclear whether this response is beneficial. We analyzed RNA-sequencing data from human left ventricle and showed that cardiac PLIN5 expression correlates with up-regulation of cardiac contraction-related processes. To investigate how elevated cardiac Plin5 levels affect cardiac contractility, we generated mice with cardiac-specific overexpression of Plin5 (MHC-Plin5 mice). These mice displayed increased left ventricular mass and cardiomyocyte size but preserved heart function. Quantitative proteomics identified sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) as a Plin5-interacting protein. In situ proximity ligation assay further confirmed the Plin5/SERCA2 interaction. Live imaging showed increases in intracellular Ca2+ release during contraction, Ca2+ removal during relaxation, and SERCA2 function in MHC-Plin5 versus WT cardiomyocytes. These results identify a role of Plin5 in improving cardiac contractility through enhanced Ca2+ signaling.


Subject(s)
Calcium Signaling , Heart Failure , Myocytes, Cardiac , Perilipin-5 , Animals , Humans , Mice , Calcium/metabolism , Cardiomegaly/genetics , Myocytes, Cardiac/metabolism , Perilipin-5/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
3.
J Cell Biochem ; 124(3): 382-395, 2023 03.
Article in English | MEDLINE | ID: mdl-36715685

ABSTRACT

Brown adipose tissue (BAT) consists of highly metabolically active adipocytes that catabolize nutrients to produce heat. Playing an active role in triacylglycerol (TAG) clearance, research has shown that dietary fatty acids can modulate the TAG chemistry deposition in BAT after weeks-long dietary intervention, similar to what has been shown in white adipose tissue (WAT). Our objective was to compare the influence of sustained, nonchronic dietary intervention (a 1-week interval) on WAT and interscapular BAT lipid metabolism and deposition in situ. We use quantitative, label-free chemical microscopy to show that 1 week of high fat diet (HFD) intervention results in dramatically larger lipid droplet (LD) growth in BAT (and liver) compared to LD growth in inguinal WAT (IWAT). Moreover, BAT showed lipid remodeling as increased unsaturated TAGs in LDs, resembling the dietary lipid composition, while WAT (and liver) did not show lipid remodeling on this time scale. Concurrently, expression of genes involved in lipid metabolism, particularly desaturases, was reduced in BAT and liver from HFD-fed mice after 1 week. Our data show that BAT lipid chemistry remodels exceptionally fast to dietary lipid intervention compared WAT, which further points towards a role in TAG clearance.


Subject(s)
Adipose Tissue, Brown , Diet, High-Fat , Mice , Animals , Adipose Tissue, Brown/metabolism , Diet, High-Fat/adverse effects , Microscopy , Adipose Tissue, White/metabolism , Liver/metabolism , Dietary Fats , Adipose Tissue , Mice, Inbred C57BL
4.
Mol Metab ; 66: 101614, 2022 12.
Article in English | MEDLINE | ID: mdl-36244663

ABSTRACT

OBJECTIVE: Pancreatic insulin was discovered a century ago, and this discovery led to the first lifesaving treatment for diabetes. While still controversial, nearly one hundred published reports suggest that insulin is also produced in the brain, with most focusing on hypothalamic or cortical insulin-producing cells. However, specific function for insulin produced within the brain remains poorly understood. Here we identify insulin expression in the hindbrain's dorsal vagal complex (DVC), and determine the role of this source of insulin in feeding and metabolism, as well as its response to diet-induced obesity in mice. METHODS: To determine the contribution of Ins2-producing neurons to feeding behavior in mice, we used the cross of transgenic RipHER-cre mouse and channelrhodopsin-2 expressing animals, which allowed us to optogenetically stimulate neurons expressing Ins2 in vivo. To confirm the presence of insulin expression in Rip-labeled DVC cells, in situ hybridization was used. To ascertain the specific role of insulin in effects discovered via optogenetic stimulation a selective, CNS applied, insulin receptor antagonist was used. To understand the physiological contribution of insulin made in the hindbrain a virogenetic knockdown strategy was used. RESULTS: Insulin gene expression and presence of insulin-promoter driven fluorescence in rat insulin promoter (Rip)-transgenic mice were detected in the hypothalamus, but also in the DVC. Insulin mRNA was present in nearly all fluorescently labeled cells in DVC. Diet-induced obesity in mice altered brain insulin gene expression, in a neuroanatomically divergent manner; while in the hypothalamus the expected obesity-induced reduction was found, in the DVC diet-induced obesity resulted in increased expression of the insulin gene. This led us to hypothesize a potentially divergent energy balance role of insulin in these two brain areas. To determine the acute impact of activating insulin-producing neurons in the DVC, optic stimulation of light-sensitive channelrhodopsin 2 in Rip-transgenic mice was utilized. Optogenetic photoactivation induced hyperphagia after acute activation of the DVC insulin neurons. This hyperphagia was blocked by central application of the insulin receptor antagonist S961, suggesting the feeding response was driven by insulin. To determine whether DVC insulin has a necessary contribution to feeding and metabolism, virogenetic insulin gene knockdown (KD) strategy, which allows for site-specific reduction of insulin gene expression in adult mice, was used. While chow-fed mice failed to reveal any changes of feeding or thermogenesis in response to the KD, mice challenged with a high-fat diet consumed less food. No changes in body weight were identified, possibly resulting from compensatory reduction in thermogenesis. CONCLUSIONS: Together, our data suggest an important role for hindbrain insulin and insulin-producing cells in energy homeostasis.


Subject(s)
Insulin , Receptor, Insulin , Animals , Mice , Rats , Channelrhodopsins/metabolism , Feeding Behavior , Hyperphagia/metabolism , Insulin/metabolism , Mice, Transgenic , Obesity/metabolism , Receptor, Insulin/metabolism , Rhombencephalon/metabolism
5.
Mol Metab ; 63: 101535, 2022 09.
Article in English | MEDLINE | ID: mdl-35760318

ABSTRACT

OBJECTIVE: Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) transports Ca2+ from the cytosol into the endoplasmic retitculum (ER) and is essential for appropriate regulation of intracellular Ca2+ homeostasis. The objective of this study was to test the hypothesis that SERCA pumps are involved in the regulation of white adipocyte hormone secretion and other aspects of adipose tissue function and that this control is disturbed in obesity-induced type-2 diabetes. METHODS: SERCA expression was measured in isolated human and mouse adipocytes as well as in whole mouse adipose tissue by Western blot and RT-qPCR. To test the significance of SERCA2 in adipocyte functionality and whole-body metabolism, we generated adipocyte-specific SERCA2 knockout mice. The mice were metabolically phenotyped by glucose tolerance and tracer studies, histological analyses, measurements of glucose-stimulated insulin release in isolated islets, and gene/protein expression analyses. We also tested the effect of pharmacological SERCA inhibition and genetic SERCA2 ablation in cultured adipocytes. Intracellular and mitochondrial Ca2+ levels were recorded with dual-wavelength ratio imaging and mitochondrial function was assessed by Seahorse technology. RESULTS: We demonstrate that SERCA2 is downregulated in white adipocytes from patients with obesity and type-2 diabetes as well as in adipocytes from diet-induced obese mice. SERCA2-ablated adipocytes display disturbed Ca2+ homeostasis associated with upregulated ER stress markers and impaired hormone release. These adipocyte alterations are linked to mild lipodystrophy, reduced adiponectin levels, and impaired glucose tolerance. Interestingly, adipocyte-specific SERCA2 ablation leads to increased glucose uptake in white adipose tissue while the glucose uptake is reduced in brown adipose tissue. This dichotomous effect on glucose uptake is due to differently regulated mitochondrial function. In white adipocytes, SERCA2 deficiency triggers an adaptive increase in fibroblast growth factor 21 (FGF21), increased mitochondrial uncoupling protein 1 (UCP1) levels, and increased oxygen consumption rate (OCR). In contrast, brown SERCA2 null adipocytes display reduced OCR despite increased mitochondrial content and UCP1 levels compared to wild type controls. CONCLUSIONS: Our data suggest causal links between reduced white adipocyte SERCA2 levels, deranged adipocyte Ca2+ homeostasis, adipose tissue dysfunction and type-2 diabetes.


Subject(s)
Adipose Tissue, Brown , Diabetes Mellitus, Type 2 , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Hormones/metabolism , Humans , Mice , Obesity/metabolism
6.
Mol Cell Endocrinol ; 549: 111619, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35337901

ABSTRACT

White adipocyte adiponectin exocytosis is triggered by cAMP and a concomitant increase of cytosolic Ca2+ potentiates its release. White adipose tissue is richly innervated by sympathetic nerves co-releasing noradrenaline (NA) and ATP, which may act on receptors in the adipocyte plasma membrane to increase cAMP via adrenergic receptors and Ca2+ via purinergic receptors. Here we determine the importance of NA and ATP for the regulation of white adipocyte adiponectin exocytosis, at the cellular and molecular level, and we specifically detail the ATP signalling pathway. We demonstrate that tyrosine hydroxylase (enzyme involved in catecholamine synthesis) is dramatically reduced in inguinal white adipose tissue (IWAT) isolated from mice with diet-induced obesity; this is associated with diminished levels of NA in IWAT and with a reduced ratio of high-molecular-weight (HMW) to total adiponectin in serum. Adiponectin exocytosis (measured as an increase in plasma membrane capacitance and as secreted product) is triggered by NA or ATP alone in cultured and primary mouse IWAT adipocytes, and enhanced by a combination of the two secretagogues. The ATP-induced adiponectin exocytosis is largely Ca2+-dependent and activated via purinergic P2Y2 receptors (P2Y2Rs) and the Gq11/PLC pathway. Adiponectin release induced by the nucleotide is abrogated in adipocytes isolated from obese and insulin-resistant mice, and this is associated with ∼70% reduced abundance of P2Y2Rs. The NA-triggered adiponectin exocytosis is likewise abolished in "obese adipocytes", concomitant with a 50% lower gene expression of beta 3 adrenergic receptors (ß3ARs). An increase in intracellular Ca2+ is not required for the NA-stimulated adiponectin secretion. Collectively, our data suggest that sympathetic innervation is a principal regulator of adiponectin exocytosis and that disruptions of this control are associated with the obesity-associated reduction of circulating levels of HMW/total adiponectin.


Subject(s)
Adipocytes, White , Adiponectin , Adenosine Triphosphate/metabolism , Adipocytes, White/metabolism , Adiponectin/metabolism , Adrenergic Agents/metabolism , Adrenergic Agents/pharmacology , Animals , Exocytosis , Insulin/metabolism , Mice , Norepinephrine/metabolism , Norepinephrine/pharmacology , Obesity/metabolism
7.
J Biol Chem ; 297(5): 101221, 2021 11.
Article in English | MEDLINE | ID: mdl-34597667

ABSTRACT

Circulating levels of the adipocyte hormone adiponectin are typically reduced in obesity, and this deficiency has been linked to metabolic diseases. It is thus important to understand the mechanisms controlling adiponectin exocytosis. This understanding is hindered by the high complexity of both the available data and the underlying signaling network. To deal with this complexity, we have previously investigated how different intracellular concentrations of Ca2+, cAMP, and ATP affect adiponectin exocytosis, using both patch-clamp recordings and systems biology mathematical modeling. Recent work has shown that adiponectin exocytosis is physiologically triggered via signaling pathways involving adrenergic ß3 receptors (ß3ARs). Therefore, we developed a mathematical model that also includes adiponectin exocytosis stimulated by extracellular epinephrine or the ß3AR agonist CL 316243. Our new model is consistent with all previous patch-clamp data as well as new data (collected from stimulations with a combination of the intracellular mediators and extracellular adrenergic stimuli) and can predict independent validation data. We used this model to perform new in silico experiments where corresponding wet lab experiments would be difficult to perform. We simulated adiponectin exocytosis in single cells in response to the reduction of ß3ARs that is observed in adipocytes from animals with obesity-induced diabetes. Finally, we used our model to investigate intracellular dynamics and to predict both cAMP levels and adiponectin release by scaling the model from single-cell to a population of cells-predictions corroborated by experimental data. Our work brings us one step closer to understanding the intricate regulation of adiponectin exocytosis.


Subject(s)
Adipocytes, White/metabolism , Adiponectin/metabolism , Exocytosis , Receptors, Adrenergic, beta-3/metabolism , Systems Biology , 3T3-L1 Cells , Adrenergic beta-3 Receptor Agonists/pharmacology , Animals , Dioxoles/pharmacology , Epinephrine/pharmacology , Mice
8.
Biochem Biophys Res Commun ; 534: 707-713, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33261886

ABSTRACT

In the current work we have investigated the cellular and molecular regulation of resistin secretion in cultured and primary mouse adipocytes. Resistin is an adipose tissue hormone proposed to contribute to metabolic disease. In rodents, resistin is secreted from white adipocytes whereas it is in humans synthesised and released from other cell types within white adipose tissue. The metabolic importance of resistin has been studied in both mouse and man, but the regulation of its release remains poorly investigated. Here we define that, in mouse adipocytes, resistin secretion is triggered by an intracellular elevation of cAMP and/or Ca2+. Resistin release is stimulated via activation of beta 3 adrenergic receptors (ß3ARs) and the downstream signalling protein exchange protein activated by cAMP (Epac). The secretion of resistin is markedly abrogated in adipocytes isolated from obese and diabetic mice. Immunocytochemical staining demonstrates a significant overlap between signals for resistin and the adipocyte hormone adiponectin. Our data propose that resistin and adiponectin are contained within the same vesicles in mouse adipocytes and that the two hormones are co-secreted in response to the same exocytosis-triggering signals.


Subject(s)
Adipocytes, White/metabolism , Adiponectin/metabolism , Resistin/metabolism , 3T3-L1 Cells , Adipocytes, White/drug effects , Animals , Calcium/metabolism , Cyclic AMP/metabolism , Diabetes Mellitus, Experimental/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Insulin/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Obese/metabolism , Receptors, Adrenergic, beta-3/metabolism , Secretory Vesicles/metabolism
9.
Methods Mol Biol ; 2233: 203-222, 2021.
Article in English | MEDLINE | ID: mdl-33222137

ABSTRACT

Exocytosis, the fusion of vesicles with the plasma membrane, can be measured with the patch-clamp technique as increases in membrane capacitance. Here we provide detailed information on how to monitor white adipocyte exocytosis using this method. We describe how to isolate the stromal vascular fraction of cells (SVF) within adipose tissue and how to differentiate SVF and cultured 3T3-L1 cells into adipocytes suitable for patch-clamp studies. We also give detailed protocols of how to record and analyze exocytosis in the differentiated cells.


Subject(s)
Adipocytes, White/ultrastructure , Cell Membrane/genetics , Exocytosis/genetics , Patch-Clamp Techniques/methods , 3T3-L1 Cells , Adipocytes, White/metabolism , Animals , Cell Membrane/ultrastructure , Mice
10.
J Endocrinol ; 247(1): 25-38, 2020 10.
Article in English | MEDLINE | ID: mdl-32668406

ABSTRACT

Here we have investigated the role of the protein caveolin 1 (Cav1) and caveolae in the secretion of the white adipocyte hormone adiponectin. Using mouse primary subcutaneous adipocytes genetically depleted of Cav1, we show that the adiponectin secretion, stimulated either adrenergically or by insulin, is abrogated while basal (unstimulated) release of adiponectin is elevated. Adiponectin secretion is similarly affected in wildtype mouse and human adipocytes where the caveolae structure was chemically disrupted. The altered ex vivo secretion in adipocytes isolated from Cav1 null mice is accompanied by lowered serum levels of the high-molecular weight (HMW) form of adiponectin, whereas the total concentration of adiponectin is unaltered. Interestingly, levels of HMW adiponectin are maintained in adipose tissue from Cav1-depleted mice, signifying that a secretory defect is present. The gene expression of key regulatory proteins known to be involved in cAMP/adrenergically triggered adiponectin exocytosis (the beta-3-adrenergic receptor and exchange protein directly activated by cAMP) remains intact in Cav1 null adipocytes. Microscopy and fractionation studies indicate that adiponectin vesicles do not co-localise with Cav1 but that some vesicles are associated with a specific fraction of caveolae. Our studies propose that Cav1 has an important role in secretion of HMW adiponectin, even though adiponectin-containing vesicles are not obviously associated with this protein. We suggest that Cav1, and/or the caveolae domain, is essential for the organisation of signalling pathways involved in the regulation of HMW adiponectin exocytosis, a function that is disrupted in Cav1/caveolae-depleted adipocytes.


Subject(s)
Adipocytes, White/metabolism , Adiponectin/metabolism , Caveolin 1/physiology , Adiponectin/blood , Adiponectin/genetics , Adult , Aged , Animals , Caveolin 1/deficiency , Cell Membrane/chemistry , Diet , Exocytosis/physiology , Female , Gene Expression/physiology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Obesity/etiology , Obesity/metabolism
11.
J Endocrinol ; 244(2): 369-381, 2020 02.
Article in English | MEDLINE | ID: mdl-31770099

ABSTRACT

L-type channel antagonists are of therapeutic benefit in the treatment of hyperlipidaemia and insulin resistance. Our aim was to identify L-type voltage-gated Ca2+ channels in white fat adipocytes, and determine if they affect intracellular Ca2+, lipolysis and lipogenesis. We used a multidisciplinary approach of molecular biology, confocal microscopy, Ca2+ imaging and metabolic assays to explore this problem using adipocytes isolated from adult rat epididymal fat pads. CaV1.2, CaV1.3 and CaV1.1 alpha1, beta and alpha2delta subunits were detected at the gene expression level. The CaV1.2 and CaV1.3 alpha1 subunits were identified in the plasma membrane at the protein level. Confocal microscopy with fluorescent antibodies labelled CaV1.2 in the plasma membrane. Ca2+ imaging revealed that the intracellular Ca2+ concentration, [Ca2 +]i was reversibly decreased by removal of extracellular Ca2+, an effect mimicked by verapamil, nifedipine and Co2+, all blockers of L-type channels, whereas the Ca2+ channel agonist BAY-K8644 increased [Ca2+]i. The finding that the magnitude of these effects correlated with basal [Ca2+]i suggests that adipocyte [Ca2+]i is controlled by L-type Ca2+ channels that are constitutively active at the adipocyte depolarized membrane potential. Pharmacological manipulation of L-type channel activity modulated both basal and catecholamine-stimulated lipolysis but not insulin-induced glucose uptake or lipogenesis. We conclude that white adipocytes have constitutively active L-type Ca2+ channels which explains their sensitivity of lipolysis to Ca2+ channel modulators. Our data suggest CaV1.2 as a potential novel therapeutic target in the treatment of obesity.


Subject(s)
Adipocytes, White/metabolism , Calcium Channels, L-Type/metabolism , Calcium Channels/metabolism , Calcium/metabolism , Adipose Tissue, White/metabolism , Animals , Calcium Channels/genetics , Calcium Channels, L-Type/genetics , Glucose/metabolism , Male , Rats , Rats, Wistar
12.
Sci Rep ; 9(1): 10680, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31337827

ABSTRACT

The hormone adiponectin is secreted by white adipocytes and has been put forward as a key mediator of obesity-linked insulin resistance and the metabolic syndrome. Although adiponectin was discovered two decades ago, the knowledge about the molecular and cellular regulation of its secretion is incomplete. Here we have investigated the adrenergic regulation of adiponectin secretion in primary visceral (gonadal) adipocytes isolated from lean or obese/diabetic mice. We show that visceral adipocyte adiponectin release is triggered by cAMP/catecholamines via signalling pathways involving adrenergic beta-3-receptors (ß3ARs) and Exchange Protein directly Activated by cAMP, isoform 1 (Epac1). The adrenergically stimulated adiponectin secretion is blunted in visceral adipocytes isolated from obese and diabetic mice and our results suggest the existence of a secretory defect. We have previously shown that adiponectin secretion in subcutaneous adipocytes is abolished in the obese/diabetic state due to reduced abundance of ß3ARs and Epac1. However, here we show that protein levels of ß3ARs and Epac1 are maintained in visceral adipocytes from obese/diabetic mice proposing that other molecular defects underlie the blunted adiponectin release. Gene expression analysis indicate diabesity-associated disturbances of the signalling downstream of Epac1 and/or the exocytotic process itself. Our study proposes that visceral adipocytes partake in the regulated secretion of adiponectin and may thus influence circulating levels of the hormone, in health and in metabolic disease.


Subject(s)
Adipocytes/metabolism , Adiponectin/metabolism , Intra-Abdominal Fat/metabolism , Obesity/metabolism , Receptors, Adrenergic, beta-3/metabolism , Adipocytes/drug effects , Adrenergic beta-3 Receptor Agonists/pharmacology , Animals , Diet, High-Fat/adverse effects , Dioxoles/pharmacology , Guanine Nucleotide Exchange Factors/metabolism , Intra-Abdominal Fat/drug effects , Male , Mice , Obesity/etiology , Signal Transduction/drug effects , Signal Transduction/physiology
13.
Cell Rep ; 26(11): 3011-3026.e5, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30865890

ABSTRACT

Chronic low-grade inflammation and increased serum levels of the cytokine IL-6 accompany obesity. For brain-produced IL-6, the mechanisms by which it controls energy balance and its role in obesity remain unclear. Here, we show that brain-produced IL-6 is decreased in obese mice and rats in a neuroanatomically and sex-specific manner. Reduced IL-6 mRNA localized to lateral parabrachial nucleus (lPBN) astrocytes, microglia, and neurons, including paraventricular hypothalamus-innervating lPBN neurons. IL-6 microinjection into lPBN reduced food intake and increased brown adipose tissue (BAT) thermogenesis in male lean and obese rats by increasing thyroid and sympathetic outflow to BAT. Parabrachial IL-6 interacted with leptin to reduce feeding. siRNA-mediated reduction of lPBN IL-6 leads to increased weight gain and adiposity, reduced BAT thermogenesis, and increased food intake. Ambient cold exposure partly normalizes the obesity-induced suppression of lPBN IL-6. These results indicate that lPBN-produced IL-6 regulates feeding and metabolism and pinpoints (patho)physiological contexts interacting with lPBN IL-6.


Subject(s)
Body Weight , Eating , Energy Metabolism , Interleukin-6/metabolism , Parabrachial Nucleus/metabolism , Thermogenesis , Adipose Tissue, Brown/metabolism , Animals , Astrocytes/metabolism , Female , Interleukin-6/genetics , Leptin/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Parabrachial Nucleus/physiology , Rats , Rats, Sprague-Dawley , Sympathetic Nervous System/physiology , Thyroid Hormones/metabolism
14.
J Biol Chem ; 294(7): 2340-2352, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30559295

ABSTRACT

ß-Adrenergic stimulation of adipose tissue increases mitochondrial density and activity (browning) that are associated with improved whole-body metabolism. Whereas chronically elevated levels of reactive oxygen species (ROS) in adipose tissue contribute to insulin resistance, transient ROS elevation stimulates physiological processes such as adipogenesis. Here, using a combination of biochemical and cell and molecular biology-based approaches, we studied whether ROS or antioxidant treatment affects ß3-adrenergic receptor (ß3-AR) stimulation-induced adipose tissue browning. We found that ß3-AR stimulation increases ROS levels in cultured adipocytes, but, unexpectedly, pretreatment with different antioxidants (N-acetylcysteine, vitamin E, or GSH ethyl ester) did not prevent this ROS increase. Using fluorescent probes, we discovered that the antioxidant treatments instead enhanced ß3-AR stimulation-induced mitochondrial ROS production. This pro-oxidant effect of antioxidants was, even in the absence of ß3-AR stimulation, associated with decreased oxygen consumption and increased lactate production in adipocytes. We observed similar antioxidant effects in WT mice: N-acetylcysteine blunted ß3-AR stimulation-induced browning of white adipose tissue and reduced mitochondrial activity in brown adipose tissue even in the absence of ß3-AR stimulation. Furthermore, N-acetylcysteine increased the levels of peroxiredoxin 3 and superoxide dismutase 2 in adipose tissue, indicating increased mitochondrial oxidative stress. We interpret this negative impact of antioxidants on oxygen consumption in vitro and adipose tissue browning in vivo as essential adaptations that prevent a further increase in mitochondrial ROS production. In summary, these results suggest that chronic antioxidant supplementation can produce a paradoxical increase in oxidative stress associated with mitochondrial dysfunction in adipocytes.


Subject(s)
Acetylcysteine/pharmacology , Adipocytes, Brown/metabolism , Antioxidants/pharmacology , Mitochondria/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , 3T3-L1 Cells , Adipocytes, Brown/physiology , Animals , Lactic Acid/metabolism , Male , Mice , Mitochondria/pathology , Receptors, Adrenergic, beta-3/metabolism
15.
Biochem J ; 475(10): 1807-1820, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29724916

ABSTRACT

Type 2 diabetes is characterized by insulin resistance in the expanding adipose tissue of obesity. The insulin resistance manifests in human adipocytes as system-wide impairment of insulin signalling. An exception is the regulation of transcription factor FOXO1 (forkhead box protein O1), which is phosphorylated downstream of mTORC2 (mammalian/mechanistic target of rapamycin in complex with raptor) and is therefore not exhibiting impaired response to insulin. However, the abundance, and activity, of FOXO1 is reduced by half in adipocytes from patients with diabetes. To elucidate the effect of reduced FOXO1 activity, we here transduced human adipocytes with a dominant-negative construct of FOXO1 (DN-FOXO1). Inhibition of FOXO1 reduced the abundance of insulin receptor, glucose transporter-4, ribosomal protein S6, mTOR and raptor. Functionally, inhibition of FOXO1 induced an insulin-resistant state network-wide, a state that qualitatively and quantitatively mimicked adipocytes from patients with type 2 diabetes. In contrast, and in accordance with these effects of DN-FOXO1, overexpression of wild-type FOXO1 appeared to augment insulin signalling. We combined experimental data with mathematical modelling to show that the impaired insulin signalling in FOXO1-inhibited cells to a large extent can be explained by reduced mTORC1 activity - a mechanism that defines much of the diabetic state in human adipocytes. Our findings demonstrate that FOXO1 is critical for maintaining normal insulin signalling of human adipocytes.


Subject(s)
Adipocytes/pathology , Diabetes Mellitus, Type 2/physiopathology , Forkhead Box Protein O1/antagonists & inhibitors , Gene Expression Regulation , Insulin Resistance , Insulin/metabolism , Adipocytes/metabolism , Adult , Aged , Antigens, CD/metabolism , Cells, Cultured , Female , Humans , Middle Aged , Phosphorylation , Receptor, Insulin/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
16.
Biochem Biophys Res Commun ; 498(4): 736-742, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29524421

ABSTRACT

Ca2+ impacts a large array of cellular processes in every known cell type. In the white adipocyte, Ca2+ is involved in regulation of metabolic processes such as lipolysis, glucose uptake and hormone secretion. Although the importance of Ca2+ in control of white adipocyte function is clear, knowledge is still lacking regarding the control of dynamic Ca2+ alterations within adipocytes and mechanisms inducing intracellular Ca2+ changes remain elusive. Own work has recently demonstrated the existence of store-operated Ca2+ entry (SOCE) in lipid filled adipocytes. We defined stromal interaction molecule 1 (STIM1) and the calcium release-activated calcium channel protein 1 (ORAI1) as the key players involved in this process and we showed that the transient receptor potential (TRP) channel TRPC1 contributed to SOCE. Here we have aimed to further characterised SOCE in the white adipocyte by use of single cell whole-cell patch clamp recordings. The electrophysiological measurements show the existence of a seemingly constitutively active current that is inhibited by known store-operated Ca2+ channel (SOCC) blockers. We demonstrate that the mechanical force applied to the plasma membrane upon patching leads to an elevation of the cytoplasmic Ca2+ concentration and that this elevation can be reversed by SOCC antagonists. We conclude that a mechanically activated current with properties similar to TRPC1 is present in white adipocytes. Activation of TRPC1 by membrane tension/stretch may be specifically important for the function of this cell type, since adipocytes can rapidly increase or decrease in size.


Subject(s)
Adipocytes, White/metabolism , Calcium/metabolism , TRPC Cation Channels/metabolism , 3T3-L1 Cells , Adenosine Triphosphate/metabolism , Adipocytes, White/cytology , Animals , Biomechanical Phenomena , Mice , ORAI1 Protein/metabolism , Patch-Clamp Techniques , Stress, Mechanical
17.
Biochem J ; 475(3): 691-704, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29335300

ABSTRACT

In the present study, we have applied ratiometric measurements of intracellular Ca2+ concentrations ([Ca2+]i) to show that extracellularly applied ATP (adenosine triphosphate) (100 µM) stimulates store-operated Ca2+ entry (SOCE) in 3T3-L1 adipocytes. ATP produced a rapid increase in [Ca2+]i consisting of an initial transient elevation followed by a sustained elevated phase that could be observed only in the presence of extracellular Ca2+ Gene expression data and [Ca2+]i recordings with uridine-5'-triphosphate or with the phospholipase C (PLC) inhibitor U73122 demonstrated the involvement of purinergic P2Y2 receptors and the PLC/inositol trisphosphate pathway. The [Ca2+]i elevation produced by reintroduction of a Ca2+-containing intracellular solution to adipocytes exposed to ATP in the absence of Ca2+ was diminished by known SOCE antagonists. The chief molecular components of SOCE, the stromal interaction molecule 1 (STIM1) and the calcium release-activated calcium channel protein 1 (ORAI1), were detected at the mRNA and protein level. Moreover, SOCE was largely diminished in cells where STIM1 and/or ORAI1 had been silenced by small interfering (si)RNA. We conclude that extracellular ATP activates SOCE in white adipocytes, an effect predominantly mediated by STIM1 and ORAI1.


Subject(s)
Adenosine Triphosphate/metabolism , Adipocytes, White/metabolism , ORAI1 Protein/genetics , Stromal Interaction Molecule 1/genetics , 3T3-L1 Cells , Animals , Calcium/metabolism , Calcium Signaling/genetics , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Multiprotein Complexes/genetics , ORAI1 Protein/metabolism , RNA, Small Interfering/genetics , Stromal Interaction Molecule 1/metabolism , TRPC Cation Channels/genetics
18.
Endocrinol Diabetes Metab ; 1(2): e00017, 2018 Apr.
Article in English | MEDLINE | ID: mdl-30815553

ABSTRACT

AIMS: KATP ion channels play a key role in glucose-stimulated insulin secretion. However, many drugs block KATP as "off targets" leading to hyperinsulinaemia and hypoglycaemia. As such drugs are often lipophilic, the aim was to examine the relationship between drug lipophilicity (P) and IC 50 for KATP block and explore if the IC 50's of statins could be predicted from their lipophilicity and whether this would allow one to forecast their acute action on insulin secretion. MATERIALS AND METHODS: A meta-analysis of 26 lipophilic, nonsulphonylurea, blockers of KATP was performed. From this, the IC 50's for pravastatin and simvastatin were predicted and then tested experimentally by exploring their effects on KATP channel activity via patch-clamp measurement, calcium imaging and insulin secretion in murine beta cells and islets. RESULTS: Nonsulphonylurea drugs inhibited KATP channels with a Log IC 50 linearly related to their logP. Simvastatin blocked KATP with an IC 50 of 25 nmol/L, a value independent of cytosolic factors, and within the range predicted by its lipophilicity (21-690 nmol/L). 10 µmol/L pravastatin, predicted IC 50 0.2-12 mmol/L, was without effect on the KATP channel. At 10-fold therapeutic levels, 100 nmol/L simvastatin depolarized the beta-cell membrane potential and stimulated Ca2+ influx but did not affect insulin secretion; the latter could be explained by serum binding. CONCLUSIONS: The logP of a drug can aid prediction for its ability to block beta-cell KATP ion channels. However, although the IC 50 for the block of KATP by simvastatin was predicted, the difference between this and therapeutic levels, as well as serum sequestration, explains why hypoglycaemia is unlikely to be observed with acute use of this statin.

19.
Sci Rep ; 7(1): 17434, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29234030

ABSTRACT

Sepsis induced cardiac dysfunction (SIC) is a severe complication to sepsis which significantly worsens patient outcomes. It is known that bacteria have the capacity to release outer membrane vesicles (OMVs), which are nano-sized bilayered vesicles composed of lipids and proteins, that can induce a fatal inflammatory response. The aim of this study was to determine whether OMVs from a uropathogenic Escherichia coli strain can induce cardiac dysfunction, and to elucidate any mechanisms involved. OMVs induced irregular Ca2+ oscillations with a decreased frequency in cardiomyocytes through recordings of intracellular Ca2+ dynamics. Mice were intraperitoneally injected with bacteria-free OMVs, which resulted in increased concentration of pro-inflammatory cytokine levels in blood. Cytokines were increased in heart lysates, and OMVs could be detected in the heart after OMVs injection. Troponin T was significantly increased in blood, and echocardiography showed increased heart wall thickness as well as increased heart rate. This study shows that E. coli OMVs induce cardiac injury in vitro and in vivo, in the absence of bacteria, and may be a causative microbial signal in SIC. The role of OMVs in clinical disease warrant further studies, as bacterial OMVs in addition to live bacteria may be good therapeutic targets to control sepsis.


Subject(s)
Cell-Derived Microparticles/immunology , Escherichia coli Infections/immunology , Escherichia coli/immunology , Heart Diseases/immunology , Sepsis/immunology , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/metabolism , Calcium/metabolism , Cell Line , Cell Survival/physiology , Cell-Derived Microparticles/drug effects , Cytokines/metabolism , Escherichia coli Infections/diagnostic imaging , Escherichia coli Infections/drug therapy , Escherichia coli Infections/pathology , Heart Diseases/diagnostic imaging , Heart Diseases/drug therapy , Heart Diseases/pathology , Lipopolysaccharides , Mice, Inbred C57BL , Myocardium/immunology , Myocardium/pathology , Polymyxin B/pharmacology , Random Allocation , Sepsis/diagnostic imaging , Sepsis/drug therapy , Sepsis/pathology , Troponin T/blood
20.
J Biol Chem ; 292(49): 20032-20043, 2017 12 08.
Article in English | MEDLINE | ID: mdl-28972187

ABSTRACT

Adiponectin is a hormone secreted from white adipocytes and takes part in the regulation of several metabolic processes. Although the pathophysiological importance of adiponectin has been thoroughly investigated, the mechanisms controlling its release are only partly understood. We have recently shown that adiponectin is secreted via regulated exocytosis of adiponectin-containing vesicles, that adiponectin exocytosis is stimulated by cAMP-dependent mechanisms, and that Ca2+ and ATP augment the cAMP-triggered secretion. However, much remains to be discovered regarding the molecular and cellular regulation of adiponectin release. Here, we have used mathematical modeling to extract detailed information contained within our previously obtained high-resolution patch-clamp time-resolved capacitance recordings to produce the first model of adiponectin exocytosis/secretion that combines all mechanistic knowledge deduced from electrophysiological experimental series. This model demonstrates that our previous understanding of the role of intracellular ATP in the control of adiponectin exocytosis needs to be revised to include an additional ATP-dependent step. Validation of the model by introduction of data of secreted adiponectin yielded a very close resemblance between the simulations and experimental results. Moreover, we could show that Ca2+-dependent adiponectin endocytosis contributes to the measured capacitance signal, and we were able to predict the contribution of endocytosis to the measured exocytotic rate under different experimental conditions. In conclusion, using mathematical modeling of published and newly generated data, we have obtained estimates of adiponectin exo- and endocytosis rates, and we have predicted adiponectin secretion. We believe that our model should have multiple applications in the study of metabolic processes and hormonal control thereof.


Subject(s)
Adipocytes, White/metabolism , Adiponectin/metabolism , Endocytosis/physiology , Exocytosis/physiology , 3T3-L1 Cells , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Biological Transport , Calcium/metabolism , Electric Capacitance , Kinetics , Mice , Models, Theoretical , Transport Vesicles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...