Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Rheumatology (Oxford) ; 62(SI2): SI210-SI225, 2023 02 23.
Article in English | MEDLINE | ID: mdl-35532072

ABSTRACT

OBJECTIVES: Juvenile-onset systemic lupus erythematosus (jSLE) affects 15-20% of lupus patients. Clinical heterogeneity between racial groups, age groups and individual patients suggests variable pathophysiology. This study aimed to identify highly penetrant damaging mutations in genes associated with SLE/SLE-like disease in a large national cohort (UK JSLE Cohort Study) and compare demographic, clinical and laboratory features in patient sub-cohorts with 'genetic' SLE vs remaining SLE patients. METHODS: Based on a sequencing panel designed in 2018, target enrichment and next-generation sequencing were performed in 348 patients to identify damaging gene variants. Findings were integrated with demographic, clinical and treatment related datasets. RESULTS: Damaging gene variants were identified in ∼3.5% of jSLE patients. When compared with the remaining cohort, 'genetic' SLE affected younger children and more Black African/Caribbean patients. 'Genetic' SLE patients exhibited less organ involvement and damage, and neuropsychiatric involvement developed over time. Less aggressive first line treatment was chosen in 'genetic' SLE patients, but more second and third line agents were used. 'Genetic' SLE associated with anti-dsDNA antibody positivity at diagnosis and reduced ANA, anti-LA and anti-Sm antibody positivity at last visit. CONCLUSION: Approximately 3.5% of jSLE patients present damaging gene variants associated with younger age at onset, and distinct clinical features. As less commonly observed after treatment induction, in 'genetic' SLE, autoantibody positivity may be the result of tissue damage and explain reduced immune complex-mediated renal and haematological involvement. Routine sequencing could allow for patient stratification, risk assessment and target-directed treatment, thereby increasing efficacy and reducing toxicity.


Subject(s)
Lupus Erythematosus, Systemic , Humans , Cohort Studies , Age of Onset , Lupus Erythematosus, Systemic/complications , Kidney , Phenotype
2.
Cancers (Basel) ; 12(4)2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32340176

ABSTRACT

Uveal melanoma (UM) has well-characterised somatic copy number alterations (SCNA) in chromosomes 1, 3, 6 and 8, in addition to mutations in GNAQ, GNA11, CYSLTR2, PLCB4, BAP1, SF3B1 and EIF1AX, most being linked to metastatic-risk. To gain further insight into the molecular landscape of UM, we designed a targeted next-generation sequencing (NGS) panel to detect SCNA and mutations in routine clinical UM samples. We compared hybrid-capture and amplicon-based target enrichment methods and tested a larger cohort of primary UM samples on the best performing panel. UM clinical samples processed either as fresh-frozen, formalin-fixed paraffin embedded (FFPE), small intraocular biopsies or following irradiation were successfully profiled using NGS, with hybrid capture outperforming the PCR-based enrichment methodology. We identified monosomy 3 (M3)-UM that were wild-type for BAP1 but harbored SF3B1 mutations, novel frameshift deletions in SF3B1 and EIF1AX, as well as a PLCB4 mutation outside of the hotspot on exon 20 coinciding with a GNAQ mutation in some UM. We observed samples that harboured mutations in both BAP1 and SF3B1, and SF3B1 and EIF1AX, respectively. Novel mutations were also identified in TTC28, KTN1, CSMD1 and TP53BP1. NGS can simultaneously assess SCNA and mutation data in UM, in a reliable and reproducible way, irrespective of sample type or previous processing. BAP1 and SF3B1 mutations, in addition to 8q copy number, are of added importance when determining UM patient outcome.

3.
Genome Res ; 28(9): 1319-1332, 2018 09.
Article in English | MEDLINE | ID: mdl-30093548

ABSTRACT

Wheat has been domesticated into a large number of agricultural environments and has the ability to adapt to diverse environments. To understand this process, we survey genotype, repeat content, and DNA methylation across a bread wheat landrace collection representing global genetic diversity. We identify independent variation in methylation, genotype, and transposon copy number. We show that these, so far unexploited, sources of variation have had a significant impact on the wheat genome and that ancestral methylation states become preferentially "hard coded" as single nucleotide polymorphisms (SNPs) via 5-methylcytosine deamination. These mechanisms also drive local adaption, impacting important traits such as heading date and salt tolerance. Methylation and transposon diversity could therefore be used alongside SNP-based markers for breeding.


Subject(s)
Adaptation, Physiological/genetics , Genetic Variation , Polyploidy , Triticum/genetics , DNA Methylation , DNA Transposable Elements/genetics
4.
BMC Genomics ; 19(1): 250, 2018 Apr 13.
Article in English | MEDLINE | ID: mdl-29653520

ABSTRACT

BACKGROUND: Bread wheat has a large complex genome that makes whole genome resequencing costly. Therefore, genome complexity reduction techniques such as sequence capture make re-sequencing cost effective. With a high-quality draft wheat genome now available it is possible to design capture probe sets and to use them to accurately genotype and anchor SNPs to the genome. Furthermore, in addition to genetic variation, epigenetic variation provides a source of natural variation contributing to changes in gene expression and phenotype that can be profiled at the base pair level using sequence capture coupled with bisulphite treatment. Here, we present a new 12 Mbp wheat capture probe set, that allows both the profiling of genotype and methylation from the same DNA sample. Furthermore, we present a method, based on Agilent SureSelect Methyl-Seq, that will use a single capture assay as a starting point to allow both DNA sequencing and methyl-seq. RESULTS: Our method uses a single capture assay that is sequentially split and used for both DNA sequencing and methyl-seq. The resultant genotype and epi-type data is highly comparable in terms of coverage and SNP/methylation site identification to that generated from separate captures for DNA sequencing and methyl-seq. Furthermore, by defining SNP frequencies in a diverse landrace from the Watkins collection we highlight the importance of having genotype data to prevent false positive methylation calls. Finally, we present the design of a new 12 Mbp wheat capture and demonstrate its successful application to re-sequence wheat. CONCLUSIONS: We present a cost-effective method for performing both DNA sequencing and methyl-seq from a single capture reaction thus reducing reagent costs, sample preparation time and DNA requirements for these complementary analyses.


Subject(s)
DNA Methylation , Genome, Plant , Sequence Analysis, DNA/methods , Triticum/genetics , Genome, Chloroplast , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/standards
5.
Plant J ; 87(4): 403-19, 2016 08.
Article in English | MEDLINE | ID: mdl-27144898

ABSTRACT

Previously we extended the utility of mapping-by-sequencing by combining it with sequence capture and mapping sequence data to pseudo-chromosomes that were organized using wheat-Brachypodium synteny. This, with a bespoke haplotyping algorithm, enabled us to map the flowering time locus in the diploid wheat Triticum monococcum L. identifying a set of deleted genes (Gardiner et al., 2014). Here, we develop this combination of gene enrichment and sliding window mapping-by-synteny analysis to map the Yr6 locus for yellow stripe rust resistance in hexaploid wheat. A 110 MB NimbleGen capture probe set was used to enrich and sequence a doubled haploid mapping population of hexaploid wheat derived from an Avalon and Cadenza cross. The Yr6 locus was identified by mapping to the POPSEQ chromosomal pseudomolecules using a bespoke pipeline and algorithm (Chapman et al., 2015). Furthermore the same locus was identified using newly developed pseudo-chromosome sequences as a mapping reference that are based on the genic sequence used for sequence enrichment. The pseudo-chromosomes allow us to demonstrate the application of mapping-by-sequencing to even poorly defined polyploidy genomes where chromosomes are incomplete and sub-genome assemblies are collapsed. This analysis uniquely enabled us to: compare wheat genome annotations; identify the Yr6 locus - defining a smaller genic region than was previously possible; associate the interval with one wheat sub-genome and increase the density of SNP markers associated. Finally, we built the pipeline in iPlant, making it a user-friendly community resource for phenotype mapping.


Subject(s)
Basidiomycota/physiology , Chromosome Mapping/methods , Disease Resistance/genetics , Genome, Plant/genetics , Plant Diseases/immunology , Triticum/genetics , Brachypodium/genetics , Diploidy , Genetic Markers/genetics , Genomics , High-Throughput Nucleotide Sequencing , Plant Diseases/microbiology , Polymorphism, Single Nucleotide/genetics , Polyploidy , Sequence Analysis, DNA , Synteny , Triticum/immunology , Triticum/microbiology
6.
J Trace Elem Med Biol ; 35: 83-9, 2016 May.
Article in English | MEDLINE | ID: mdl-27049130

ABSTRACT

Wilson's disease, caused by a mutation in the ATP-ase 7B gene, is the only genetically characterised human disease with inhibition of biliary copper excretion and toxic copper accumulation in liver and occasionally brain. A similar copper toxicosis occurs in Bedlington terriers (CT) with liver damage only. Although CT has been associated with a defect in the COMMD1 gene (COMMD1 (del/del)), Bedlington terriers with CT and lacking this mutation are also recognised (non-COMMD1 (del/del)). A study was designed to identify any other gene polymorphisms associated with copper toxicity in Bedlington terriers employing genome wide association studies (GWAS) followed by deep sequencing of the candidate region. Blood for DNA analysis and liver for confirmation of the diagnosis was obtained from 30 non-COMMD1 (del/del) Bedlington terriers comprising equal numbers of CT-affected dogs and controls. DNA was initially subjected to GWAS screening and then further sequencing to target the putative mutant gene. The study has identified a significant disease association with a region on chromosome 37 containing identified SNP's which are highly significantly associated with non-COMMD1 (del/del) Bedlington terrier CT. This region contains the ABCA12 gene which bears a close functional relationship to ATP-ase 7B responsible for Wilson's disease in man.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Adaptor Proteins, Signal Transducing/genetics , Copper/toxicity , Alternative Splicing/genetics , Animals , Dogs , Genome-Wide Association Study , Introns/genetics , Liver/drug effects , Liver/pathology , Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA
7.
Genome Biol ; 16: 273, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26653535

ABSTRACT

BACKGROUND: DNA methylation is an important mechanism of epigenetic gene expression control that can be passed between generations. Here, we use sodium bisulfite treatment and targeted gene enrichment to study genome-wide methylation across the three sub-genomes of allohexaploid wheat. RESULTS: While the majority of methylation is conserved across all three genomes we demonstrate that differential methylation exists between the sub-genomes in approximately equal proportions. We correlate sub-genome-specific promoter methylation with decreased expression levels and show that altered growing temperature has a small effect on methylation state, identifying a small but functionally relevant set of methylated genes. Finally, we demonstrate long-term methylation maintenance using a comparison between the D sub-genome of hexaploid wheat and its progenitor Aegilops tauschii. CONCLUSIONS: We show that tri-genome methylation is highly conserved with the diploid wheat progenitor while sub-genome-specific methylation shows more variation.


Subject(s)
DNA Methylation , Genome, Plant , Triticum/genetics , DNA Transposable Elements , Diploidy , Gene Expression , Polyploidy , Promoter Regions, Genetic , Stress, Physiological/genetics , Temperature
8.
PLoS Genet ; 11(4): e1005141, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25880677

ABSTRACT

Although many theoretical models of sympatric speciation propose that genes responsible for assortative mating amongst incipient species should be associated with genomic regions protected from recombination, there are few data to support this theory. The malaria mosquito, Anopheles gambiae, is known for its sympatric cryptic species maintained by pre-mating reproductive isolation and its putative genomic islands of speciation, and is therefore an ideal model system for studying the genomic signature associated with incipient sympatric speciation. Here we selectively introgressed the island of divergence located in the pericentric region of the X chromosome of An. gambiae s.s. into its sister taxon An. coluzzii through 5 generations of backcrossing followed by two generations of crosses within the introgressed strains that resulted in An. coluzzii-like recombinant strains fixed for the M and S marker in the X chromosome island. The mating preference of recombinant strains was then tested by giving virgin recombinant individuals a choice of mates with X-islands matching and non-matching their own island type. We show through genetic analyses of transferred sperm that recombinant females consistently mated with matching island-type males thereby associating assortative mating genes with the X-island of divergence. Furthermore, full-genome sequencing confirmed that protein-coding differences between recombinant strains were limited to the experimentally swapped pericentromeric region. Finally, targeted-genome comparisons showed that a number of these unique differences were conserved in sympatric field populations, thereby revealing candidate speciation genes. The functional demonstration of a close association between speciation genes and the X-island of differentiation lends unprecedented support to island-of-speciation models of sympatric speciation facilitated by pericentric recombination suppression.


Subject(s)
Anopheles/genetics , Chromosomes, Insect/genetics , Genetic Speciation , Mating Preference, Animal , Sympatry , X Chromosome/genetics , Animals , Anopheles/physiology , Female , Male
9.
PLoS One ; 9(11): e109978, 2014.
Article in English | MEDLINE | ID: mdl-25372666

ABSTRACT

Crucian carp are unusual among vertebrates in surviving extended periods in the complete absence of molecular oxygen. During this time cardiac output is maintained though these mechanisms are not well understood. Using a high-density cDNA microarray, we have defined the genome-wide gene expression responses of cardiac tissue after exposing the fish at two temperatures (8 and 13 °C) to one and seven days of anoxia, followed by seven days after restoration to normoxia. At 8 °C, using a false discovery rate of 5%, neither anoxia nor re-oxygenation elicited appreciable changes in gene expression. By contrast, at 13 °C, 777 unique genes responded strongly. Up-regulated genes included those involved in protein turnover, the pentose phosphate pathway and cell morphogenesis while down-regulated gene categories included RNA splicing and transcription. Most genes were affected between one and seven days of anoxia, indicating gene regulation over the medium term but with few early response genes. Re-oxygenation for 7 days was sufficient to completely reverse these responses. Glycolysis displayed more complex responses with anoxia up-regulated transcripts for the key regulatory enzymes, hexokinase and phosphofructokinase, but with down-regulation of most of the non-regulatory genes. This complex pattern of responses in genomic transcription patterns indicates divergent cardiac responses to anoxia, with the transcriptionally driven reprogramming of cardiac function seen at 13 °C being largely completed at 8 °C.


Subject(s)
Adaptation, Physiological/genetics , Fish Proteins/genetics , Hypoxia/genetics , Myocardium/metabolism , Oxygen/metabolism , Animals , Carps , Fish Proteins/metabolism , Glycolysis , Hypoxia/metabolism , Temperature , Transcriptome
10.
Plant J ; 80(5): 895-904, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25205592

ABSTRACT

Mapping-by-sequencing analyses have largely required a complete reference sequence and employed whole genome re-sequencing. In species such as wheat, no finished genome reference sequence is available. Additionally, because of its large genome size (17 Gb), re-sequencing at sufficient depth of coverage is not practical. Here, we extend the utility of mapping by sequencing, developing a bespoke pipeline and algorithm to map an early-flowering locus in einkorn wheat (Triticum monococcum L.) that is closely related to the bread wheat genome A progenitor. We have developed a genomic enrichment approach using the gene-rich regions of hexaploid bread wheat to design a 110-Mbp NimbleGen SeqCap EZ in solution capture probe set, representing the majority of genes in wheat. Here, we use the capture probe set to enrich and sequence an F2 mapping population of the mutant. The mutant locus was identified in T. monococcum, which lacks a complete genome reference sequence, by mapping the enriched data set onto pseudo-chromosomes derived from the capture probe target sequence, with a long-range order of genes based on synteny of wheat with Brachypodium distachyon. Using this approach we are able to map the region and identify a set of deleted genes within the interval.


Subject(s)
Chromosome Mapping/methods , Mutation , Triticum/genetics , Algorithms , Brachypodium/genetics , Chromosomes, Plant , Gene Frequency , Genome, Plant , Homozygote , Polymorphism, Single Nucleotide , Polyploidy , Sequence Deletion , Synteny
11.
Mol Ecol ; 22(6): 1589-608, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23205577

ABSTRACT

Anthropogenic endocrine disruptors now contaminate all environments globally, with concomitant deleterious effects across diverse taxa. While most studies on endocrine disruption (ED) have focused on vertebrates, the superimposition of male sexual characteristics in the female dogwhelk, Nucella lapillus (imposex), caused by organotins, provides one of the most clearcut ecological examples of anthropogenically induced ED in aquatic ecosystems. To identify the underpinning mechanisms of imposex for this 'nonmodel' species, we combined Roche 454 pyrosequencing with custom oligoarray fabrication inexpensively to both generate gene models and identify those responding to chronic tributyltin (TBT) treatment. The results supported the involvement of steroid, neuroendocrine peptide hormone dysfunction and retinoid mechanisms, but suggested additionally the involvement of putative peroxisome proliferator-activated receptor (PPAR) pathways. Application of rosiglitazone, a well-known vertebrate PPARγ ligand, to dogwhelks induced imposex in the absence of TBT. Thus, while TBT-induced imposex is linked to the induction of many genes and has a complex phenotype, it is likely also to be driven by PPAR-responsive pathways, hitherto not described in invertebrates. Our findings provide further evidence for a common signalling pathway between invertebrate and vertebrate species that has previously been overlooked in the study of endocrine disruption.


Subject(s)
Disorders of Sex Development/chemically induced , Endocrine Disruptors/toxicity , Environmental Monitoring/methods , Gastropoda/drug effects , Transcriptome , Trialkyltin Compounds/toxicity , Animals , Female , Gastropoda/genetics , Gastropoda/growth & development , Gene Library , Male , Oligonucleotide Array Sequence Analysis , Peroxisome Proliferator-Activated Receptors/metabolism , Rosiglitazone , Sequence Analysis, DNA , Thiazolidinediones/toxicity , Water Pollutants, Chemical/toxicity
12.
Methods Mol Biol ; 533: 289-309, 2009.
Article in English | MEDLINE | ID: mdl-19277566

ABSTRACT

Microarray analyses provide information on the relative expression levels of large numbers of gene products (transcripts). As such they have been widely used to examine differences in gene expression across a variety of samples such as tissues and life-cycle stages. Due to a previous lack of sequence data, microarray analyses have typically centred on the study of well-characterised model organisms. However, the recent availability of large sets of expressed sequence tags (ESTs) generated for the purpose of gene discovery offers the opportunity to consider designing and applying microarray technology to a larger and more diverse set of species. Here we outline the array-design process involving the generation of an optimised set of oligoprobes from a minimally redundant but maximally representative list of sequences from raw EST data. We illustrate these principles by showing how we designed and fabricated a high-density oligoarray for the rainbow trout, a non-model species for which large numbers of ESTs, and a non-redundant assembly is available. This approach brings array technology within the reach of all investigators, even those with limited budgets.


Subject(s)
Expressed Sequence Tags , Oligonucleotide Array Sequence Analysis/methods , Animals , Computers , Gene Expression Profiling , Humans , Internet , Mice , Nucleic Acid Hybridization , Oligonucleotides/chemistry , Programming Languages , RNA, Messenger/metabolism , Software , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...