Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 381(2249): 20220063, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37150197

ABSTRACT

Estimates of ocean [Formula: see text] uptake from global ocean biogeochemistry models and [Formula: see text]-based data products differ substantially, especially in high latitudes and in the trend of the [Formula: see text] uptake since 2000. Here, we assess the effect of data sparsity on two [Formula: see text]-based estimates by subsampling output from a global ocean biogeochemistry model. The estimates of the ocean [Formula: see text] uptake are improved from a sampling scheme that mimics present-day sampling to an ideal sampling scheme with 1000 evenly distributed sites. In particular, insufficient sampling has given rise to strong biases in the trend of the ocean carbon sink in the [Formula: see text] products. The overestimation of the [Formula: see text] flux trend by 20-35% globally and 50-130% in the Southern Ocean with the present-day sampling is reduced to less than [Formula: see text] with the ideal sampling scheme. A substantial overestimation of the decadal variability of the Southern Ocean carbon sink occurs in one product and appears related to a skewed data distribution in [Formula: see text] space. With the ideal sampling, the bias in the mean [Formula: see text] flux is reduced from 9-12% to 2-9% globally and from 14-26% to 5-17% in the Southern Ocean. On top of that, discrepancies of about [Formula: see text] (15%) persist due to uncertainties in the gas-exchange calculation. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.

2.
Sci Rep ; 13(1): 3006, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36810764

ABSTRACT

Robust detection of anthropogenic climate change is crucial to: (i) improve our understanding of Earth system responses to external forcing, (ii) reduce uncertainty in future climate projections, and (iii) develop efficient mitigation and adaptation plans. Here, we use Earth system model projections to establish the detection timescales of anthropogenic signals in the global ocean through analyzing temperature, salinity, oxygen, and pH evolution from surface to 2000 m depths. For most variables, anthropogenic changes emerge earlier in the interior ocean than at the surface, due to the lower background variability at depth. Acidification is detectable earliest, followed by warming and oxygen changes in the subsurface tropical Atlantic. Temperature and salinity changes in the subsurface tropical and subtropical North Atlantic are shown to be early indicators for a slowdown of the Atlantic Meridional Overturning Circulation. Even under mitigated scenarios, inner ocean anthropogenic signals are projected to emerge within the next few decades. This is because they originate from existing surface changes that are now propagating into the interior. In addition to the tropical Atlantic, our study calls for establishment of long-term interior monitoring systems in the Southern Ocean and North Atlantic in order to elucidate how spatially heterogeneous anthropogenic signals propagate into the interior and impact marine ecosystems and biogeochemistry.

3.
PLoS One ; 15(9): e0239373, 2020.
Article in English | MEDLINE | ID: mdl-32991577

ABSTRACT

Extending oceanographic data beyond the instrumental period is highly needed to better characterize and understand multi-decadal to centennial natural ocean variability. Here, a stable isotope record at unprecedented temporal resolution (1 to 2 years) from a new marine core retrieved off western North Iceland is presented. We aim to better constrain the variability of subsurface, Atlantic-derived Subpolar Mode Water (SPMW), using near surface-dwelling planktic foraminifera and Arctic Intermediate Water (AIW) mass changes using benthic foraminifera over the last ~165 years. The reconstruction overlaps in time with instrumental observations and a direct comparison reveals that the δ18O record of Neogloboquadrina pachyderma is reliably representing temperature fluctuations in the SPMWs. Trends in the N. pachyderma δ13C record match the measured phosphate concentration in the upper 200 m on the North Icelandic Shelf well. Near surface-dwelling foraminifera trace anthropogenic CO2 in the Iceland Sea by ~ 1950 ± 8, however, a reduced amplitude shift in the Marine Suess effect is identified. We argue that this is caused by a contemporary ongoing increase in marine primary productivity in the upper ocean due to enhanced Greenland's freshwater discharge that has contributed to a nutrient-driven fertilization since the 1940s/50s (Perner et al., 2019). Multi-decadal variability is detected. We find that the 16-year periodicity evident in SPMW and AIWs based on the δ18O of N. pachyderma and M. barleeanum is a signal of SST anomalies propagated into the Nordic Seas via the Atlantic inflow branches around Iceland. Spectral analyses of the planktic foraminiferal δ13C signal indicate intermittent 30-year cycles that are likely reflecting the ocean response to atmospheric variability, presumably the East Atlantic Pattern. A long-term trend in benthic δ18O suggests that Atlantic-derived waters are expanding their core within the water column from the subsurface into deeper intermediate depths towards the present day. This is a result of increased transport by the North Icelandic Irminger Current to the North Iceland Shelf over the historical era.


Subject(s)
Oceanography/trends , Ecosystem , Iceland , Isotopes/chemistry , Temperature , Water/chemistry
4.
Sci Rep ; 9(1): 20153, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882779

ABSTRACT

Shelf seas play an important role in the global carbon cycle, absorbing atmospheric carbon dioxide (CO2) and exporting carbon (C) to the open ocean and sediments. The magnitude of these processes is poorly constrained, because observations are typically interpolated over multiple years. Here, we used 298500 observations of CO2 fugacity (fCO2) from a single year (2015), to estimate the net influx of atmospheric CO2 as 26.2 ± 4.7 Tg C yr-1 over the open NW European shelf. CO2 influx from the atmosphere was dominated by influx during winter as a consequence of high winds, despite a smaller, thermally-driven, air-sea fCO2 gradient compared to the larger, biologically-driven summer gradient. In order to understand this climate regulation service, we constructed a carbon-budget supplemented by data from the literature, where the NW European shelf is treated as a box with carbon entering and leaving the box. This budget showed that net C-burial was a small sink of 1.3 ± 3.1 Tg C yr-1, while CO2 efflux from estuaries to the atmosphere, removed the majority of river C-inputs. In contrast, the input from the Baltic Sea likely contributes to net export via the continental shelf pump and advection (34.4 ± 6.0 Tg C yr-1).

5.
Sci Rep ; 9(1): 18624, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31819102

ABSTRACT

The ocean's chemistry is changing due to the uptake of anthropogenic carbon dioxide (CO2). This phenomenon, commonly referred to as "Ocean Acidification", is endangering coral reefs and the broader marine ecosystems. In this study, we combine a recent observational seawater CO2 data product, i.e., the 6th version of the Surface Ocean CO2 Atlas (1991-2018, ~23 million observations), with temporal trends at individual locations of the global ocean from a robust Earth System Model to provide a high-resolution regionally varying view of global surface ocean pH and the Revelle Factor. The climatology extends from the pre-Industrial era (1750 C.E.) to the end of this century under historical atmospheric CO2 concentrations (pre-2005) and the Representative Concentrations Pathways (post-2005) of the Intergovernmental Panel on Climate Change (IPCC)'s 5th Assessment Report. By linking the modeled pH trends to the observed modern pH distribution, the climatology benefits from recent improvements in both model design and observational data coverage, and is likely to provide improved regional OA trajectories than the model output could alone, therefore, will help guide the regional OA adaptation strategies. We show that air-sea CO2 disequilibrium is the dominant mode of spatial variability for surface pH, and discuss why pH and calcium carbonate mineral saturation states, two important metrics for OA, show contrasting spatial variability.

6.
Science ; 363(6432): 1193-1199, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30872519

ABSTRACT

We quantify the oceanic sink for anthropogenic carbon dioxide (CO2) over the period 1994 to 2007 by using observations from the global repeat hydrography program and contrasting them to observations from the 1990s. Using a linear regression-based method, we find a global increase in the anthropogenic CO2 inventory of 34 ± 4 petagrams of carbon (Pg C) between 1994 and 2007. This is equivalent to an average uptake rate of 2.6 ± 0.3 Pg C year-1 and represents 31 ± 4% of the global anthropogenic CO2 emissions over this period. Although this global ocean sink estimate is consistent with the expectation of the ocean uptake having increased in proportion to the rise in atmospheric CO2, substantial regional differences in storage rate are found, likely owing to climate variability-driven changes in ocean circulation.

7.
PLoS One ; 9(5): e95273, 2014.
Article in English | MEDLINE | ID: mdl-24788513

ABSTRACT

The temporal and spatial dynamics of primary and secondary biomass/production in the Barents Sea since the late 1990s are examined using remote sensing data, observations and a coupled physical-biological model. Field observations of mesozooplankton biomass, and chlorophyll a data from transects (different seasons) and large-scale surveys (autumn) were used for validation of the remote sensing products and modeling results. The validation showed that satellite data are well suited to study temporal and spatial dynamics of chlorophyll a in the Barents Sea and that the model is an essential tool for secondary production estimates. Temperature, open water area, chlorophyll a, and zooplankton biomass show large interannual variations in the Barents Sea. The climatic variability is strongest in the northern and eastern parts. The moderate increase in net primary production evident in this study is likely an ecosystem response to changes in climate during the same period. Increased open water area and duration of open water season, which are related to elevated temperatures, appear to be the key drivers of the changes in annual net primary production that has occurred in the northern and eastern areas of this ecosystem. The temporal and spatial variability in zooplankton biomass appears to be controlled largely by predation pressure. In the southeastern Barents Sea, statistically significant linkages were observed between chlorophyll a and zooplankton biomass, as well as between net primary production and fish biomass, indicating bottom-up trophic interactions in this region.


Subject(s)
Biomass , Climate , Oceans and Seas , Animals , Biodiversity , Chlorophyll/analogs & derivatives , Ecosystem , Oceanography , Population Dynamics , Remote Sensing Technology , Reproducibility of Results , Satellite Imagery , Seasons , Temperature , Zooplankton
8.
Science ; 330(6004): 658-9, 2010 Oct 29.
Article in English | MEDLINE | ID: mdl-21030654

ABSTRACT

The carbon isotopic composition ((13)C/(12)C, expressed as δ(13)C) of fossil foraminifera is the primary tracer used to infer changes in past ocean ventilation, and its variations are interpreted by using the modern oceanic δ(13)C distribution as a framework. However, the present ocean δ(13)C distribution is strongly overprinted by isotopically light anthropogenic carbon dioxide. A correction for this oceanic C-13 Suess effect in the North Atlantic (NA) shows that the pristine NA δ(13)C distribution has a richer and more detailed structure that is more clearly related to water mass distributions. Our results revise some fundamental perceptions regarding glacial-interglacial ocean δ(13)C differences and allow paleo-δ(13)C variations to be understood within the context of modern climate variability.

9.
Science ; 326(5958): 1391-3, 2009 Dec 04.
Article in English | MEDLINE | ID: mdl-19965756

ABSTRACT

The oceans are a major sink for atmospheric carbon dioxide (CO2). Historically, observations have been too sparse to allow accurate tracking of changes in rates of CO2 uptake over ocean basins, so little is known about how these vary. Here, we show observations indicating substantial variability in the CO2 uptake by the North Atlantic on time scales of a few years. Further, we use measurements from a coordinated network of instrumented commercial ships to define the annual flux into the North Atlantic, for the year 2005, to a precision of about 10%. This approach offers the prospect of accurately monitoring the changing ocean CO2 sink for those ocean basins that are well covered by shipping routes.

10.
Talanta ; 56(1): 61-9, 2002 Jan 04.
Article in English | MEDLINE | ID: mdl-18968480

ABSTRACT

Measurement strategies for understanding the oceanic CO(2) (carbon dioxide) system are moving towards in situ and ship of opportunity sampling techniques. Automated instrumentation with high accuracy and sampling frequencies will enable a greater understanding of the fluxes of marine carbon and lead to a more reliable constrain on the calculated uptake of anthropogenic CO(2) by the oceans. This paper describes the automated marine pH sensor (AMpS); new instrumentation and methodology for the determination of seawater pH using dual spectrophotometric measurements of sulfonephthalein indicator in a semi-continuous seawater stream. The pH values measured during a recent study in the Weddell Sea are used to illustrate the excellent properties of the AMpS. The method has an on-line precision of better than 0.001 pH units and an estimated accuracy of better than 0.004 pH units. The instrument is compact, portable and has a measurement frequency of 20 samples per hour. The instrument is ideally suitable for operation on ships of opportunity.

SELECTION OF CITATIONS
SEARCH DETAIL
...