Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 363: 142760, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38969229

ABSTRACT

The biochar-enabled advanced reduction process (ARP) was developed for enhanced sorption (by biochar) and destruction of PFAS (by ARP) in water. First, the biochar (BC) was functionalized by iron oxide (Fe3O4), zero valent iron (ZVI), and chitosan (chi) to produce four biochars (BC, Fe3O4-BC, ZVI-chi-BC, and chi-BC) with improved physicochemical properties (e.g., specific surface area, pore structure, hydrophobicity, and surface functional groups). Batch sorption experimental results revealed that compared to unmodified biochar, all modified biochars showed greater sorption efficiency, and the chi-BC performed the best for PFAS sorption. The chi-BC was then selected to facilitate reductive destruction and defluorination of PFAS in water by ARP in the UV-sulfite system. Adding chi-BC in UV-sulfite ARP system significantly enhanced both degradation and defluorination efficiencies of PFAS (up to ∼100% degradation and ∼85% defluorination efficiencies). Radical analysis using electron paramagnetic resonance (EPR) spectroscopy showed that sulfite radicals dominated at neutral pH (7.0), while hydrated electrons (eaq-) were abundant at higher pH (11) for the efficient destruction of PFAS in the ARP system. Our findings elucidate the synergies of biochar and ARP in enhancing PFAS sorption and degradation, providing new insights into PFAS reductive destruction and defluorination by different reducing radical species at varying pH conditions.


Subject(s)
Charcoal , Water Pollutants, Chemical , Charcoal/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Chitosan/chemistry , Fluorocarbons/chemistry , Ferric Compounds/chemistry , Oxidation-Reduction , Water Purification/methods , Iron/chemistry
2.
Chemosphere ; 342: 140036, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37714477

ABSTRACT

Arsenic in groundwater is a global threat to public health. Recently, As mobility has been tied to the concentration and chemical characteristics of dissolved organic matter (DOM) through formation of As-DOM complexes. To date, there has been a wide range of DOM types studied to understand As-DOM interactions, but most of these have focused on surface water derived materials and not groundwater DOM. We address this gap in knowledge by simulating groundwater DOM using water extractable organic matter (WEOM) from two lignite deposits and treating the extracts with increasing concentrations of As. As-DOM complexes were measured using size-exclusion chromatography coupled to multiple detectors including an inductively coupled plasma mass spectrometer (ICPMS) for As detection as well as fluorescence and variable wave detectors for organic matter detection. First, we found two different size fractions of As-DOM, one of ∼1 kDa and another of ∼15 kDa, depending on the DOM types. The smaller As-DOM complex (∼1 kDa) was approximately 10 times more abundant than the larger complex (∼15 kDa). Second, we found that the lignite derived DOMs showed higher conditional distribution coefficients than did the surface water reference material (Suwanee River Natural Organic Matter, SRNOM). Finally, the data showed good fit (R2 > 0.92) to one-site ligand binding models, and the lignite derived DOMs showed higher maximum sorbate concentrations (Bmax) compared to SRNOM. Together, this study shows that As-DOM complexation is an important control on As speciation, even in groundwater systems.


Subject(s)
Arsenic , Groundwater , Water Pollutants, Chemical , Water/analysis , Dissolved Organic Matter , Arsenic/analysis , Coal , Groundwater/chemistry , Water Pollutants, Chemical/analysis
3.
Chemosphere ; 330: 138661, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37044140

ABSTRACT

Biochar has recently emerged as a cost-effective solution to combat per- and polyfluoroalkyl substances (PFAS) pollution in water, but mechanistic understanding of which physicochemical properties of biochars dictate PFAS sorptive removal from water remains elusive. Herein, 15 biochars were pyrolyzed from five feedstocks (corn, Douglas fir, eucalyptus, poplar, and switchgrass) at three pyrolysis temperatures (500, 700, and 900 °C) to investigate their removal efficiencies and mechanisms of perfluorooctane sulfonate (PFOS) from water. A commercial biochar was also included for comparison. Biochar physiochemical properties, including elemental composition, pH, specific surface area (SSA), pore structure, hydrophobicity, surface charge, surface functional groups, and crystalline structure were systematically characterized. Batch sorption data showed that the Douglas fir 900 biochar (Douglas fir and 900 are the feedstock type and pyrolysis temperature, respectively; this naming rule applies to other biochars), poplar 900 biochar, and commercial biochar can remove over 95% of PFOS from water. Structural equation model (SEM) was used to elucidate which biochar properties affect PFOS sorption. Interestingly, biochar pore diameter was identified as the most critical factor controlling PFOS removal, but pore diameter/pore volume ratio, SSA, pyrolysis temperature, hydrophobicity, and elemental composition all played variable roles. Hypothetically, biochars with small pore diameters and large pore volumes had a narrow yet deep pore structure that traps PFOS molecules inside once already sorbed, resulting in an enhanced PFOS sorption. Biochars with small pore diameter, low nitrogen content, and high pyrolysis temperature were also favorable for enhanced PFOS sorption. Our findings advance the knowledge of using biochars with optimized properties to remove PFOS and possibly other similar PFAS compounds from water.


Subject(s)
Fluorocarbons , Populus , Adsorption , Charcoal/chemistry , Temperature
4.
Nat Commun ; 14(1): 345, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36670099

ABSTRACT

Decomposition of soil organic matter (SOM) can be stimulated by fresh organic matter input, a phenomenon known as the 'priming effect'. Despite its global importance, the relationship of the priming effect to mineral weathering and nutrient release remains unclear. Here we show close linkages between mineral weathering in the critical zone and primed decomposition of SOM. Intensified mineral weathering and rock-derived nutrient release are generally coupled with primed SOM decomposition resulting from "triggered" microbial activity. Fluxes of organic matter products decomposed via priming are linearly correlated with weathering congruency. Weathering congruency influences the formation of organo-mineral associations, thereby modulating the accessibility of organic matter to microbial decomposers and, thus, the priming effect. Our study links weathering with primed SOM decomposition, which plays a key role in controlling soil C dynamics in space and time. These connections represent fundamental links between long-term lithogenic element cycling (= weathering) and rapid turnover of carbon and nutrients (= priming) in soil.


Subject(s)
Soil Microbiology , Weather , Soil , Minerals , Carbon
5.
J Environ Qual ; 44(3): 849-58, 2015 May.
Article in English | MEDLINE | ID: mdl-26024265

ABSTRACT

Plant cuticles are important precursors for soil organic matter, in particular for soil humin, which is considered an efficient sorbent for organic pollutants. In this study, we examined degradation and transformation of cuticles isolated from fruit and leaves in loamy sand and sandy clay loessial arid brown soils. We then studied sorption of phenanthrene and carbamazepine to humin-mineral matrices isolated from the incubated soils. Low degradation (22%) was observed for agave cuticle in a sandy clay soil system, whereas high degradation (68-78%) was obtained for agave cuticle in a loamy sand soil system and for loamy sand and sandy clay soils amended with tomato cuticle. During incubation, most of the residual organic matter was accumulated in the humin fraction. Sorption of phenanthrene was significantly higher for humin-mineral matrices obtained from soils incubated with plant cuticles as compared with soils without cuticle application. Sorption of carbamazepine to humin-mineral matrices was not affected by cuticle residues. Cooperative sorption of carbamazepine on humin-mineral matrices isolated from sandy clay soil is suggested. Sorption-desorption hysteresis of both phenanthrene and carbamazepine was lower for humin-mineral matrices obtained from soils incubated with plant cuticles as compared with nonamended soils. Our results show that cuticle composition significantly affects the rate and extent of cuticle degradation in soils and that plant cuticle application influences sorption and desorption of polar and nonpolar pollutants by humin-mineral matrices.

6.
Environ Pollut ; 159(10): 2375-9, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21783286

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) are flame retardants that are commonly found in commercial and household products. These compounds are considered persistent organic pollutants. In this study, we used 4,4'-dibromodiphenyl ether (BDE-15) as a model compound to elucidate the sorption and desorption behavior of PBDEs in soils. The organic carbon-normalized sorption coefficient (K(OC)) of BDE-15 was more than three times higher for humin than for bulk soils. However, pronounced desorption hysteresis was obtained mainly for bulk soils. For humin, increasing concentration of sorbed BDE-15 resulted in decreased desorption. Our data illustrate that BDE-15 and probably other PBDEs exhibit high sorption affinity to soils. Moreover, sorption is irreversible and thus PBDEs can potentially accumulate in the topsoil layer. We also suggest that although humin is probably a major sorbent for PBDEs in soils, other humic materials are also responsible for their sequestration.


Subject(s)
Halogenated Diphenyl Ethers/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Adsorption , Environmental Monitoring , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Models, Chemical , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL