Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Am J Intellect Dev Disabil ; 129(2): 101-109, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38411242

ABSTRACT

Loss of function variants in the Cyclin-dependent kinase-like 5 gene (CDKL5) causes CDKL5 deficiency disorder (CDD). Most cases of CDD are due to a de novo missense or truncating variants. The CDKL5 gene was discovered in 1998 as part of the genomic mapping of the chromosome Xp22 region that led to the discovery of the serine-threonine kinases STK9. Since then, there have been significant advancements in the description of the disease in humans, the understanding of the pathophysiology, and the management of the disease. There have been many lessons learned since the initial description of the condition in humans in 2003. In this article, we will focus on pathophysiology, clinical manifestations, with particular focus on seizures because of its relevance to the medical practitioners and researchers and guidelines for management. We finalize the manuscript with the voice of the parents and caregivers, as discussed with the 2019 meeting with the Food and Drug Administration.


Subject(s)
Epileptic Syndromes , Spasms, Infantile , United States , Humans , Spasms, Infantile/genetics , Epileptic Syndromes/genetics , Protein Serine-Threonine Kinases/genetics
2.
Epilepsia ; 65(1): 37-45, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37950390

ABSTRACT

OBJECTIVE: In the placebo-controlled, double-blind phase of the Marigold study (NCT03572933), ganaxolone significantly reduced major motor seizure frequency (MMSF) in patients with cyclin-dependent kinase-like 5 deficiency disorder (CDD). We report 2-year safety and clinical outcomes data from the open-label extension (OLE) phase of Marigold. METHODS: Patients with CDD who completed the double-blind phase were eligible to continue in the OLE. Efficacy assessments included MMSF reduction from prerandomization baseline, responder rates, and Clinical Global Impression-Improvement scores, including assessment of seizure intensity and duration (CGI-CSID). Safety assessments included treatment-emergent adverse events (TEAEs) and TEAEs leading to discontinuation. RESULTS: Of 101 patients who enrolled in Marigold, 88 (87.1%) entered the OLE (median age = 5 years, 79.5% female). Median 28-day MMSF at baseline was 50.6. At 2 years in the OLE (months 22-24), MMSF was reduced by a median of 48.2% (n = 50); when missing data were imputed, median reduction in MMSF was 43.8% using a mixed effects model and 27.4% using a last observation carried forward model. During months 22-24, 23 of 50 (46.0%) patients experienced reductions in MMSF of ≥50%; 12 of 50 (24.0%) patients experienced MMSF reductions of ≥75%. During months 22-24, 40 of 49 (81.6%) patients were rated by caregivers as having improvement in seizure-related outcomes based on CGI-CSID scores. Thirty-seven patients discontinued ganaxolone due to lack of efficacy (n = 13), withdrawal by caregiver (n = 12), adverse event (n = 10), physician decision (n = 1), or death (n = 1; unrelated to study drug). The most common treatment-related TEAEs were somnolence (17.0%), seizure (11.4%), and decreased appetite (5.7%). Patients reported serious TEAEs (n = 28, 31.8%); those reported in ≥3% of patients were seizure (n = 6), pneumonia (n = 5), acute respiratory failure (n = 3), aspiration pneumonia (n = 3), and dehydration (n = 3). SIGNIFICANCE: Sustained reductions in MMSF at 2 years in the OLE support the efficacy of ganaxolone in seizures associated with CDD. Safety findings in the OLE were consistent with the double-blind phase.


Subject(s)
Anticonvulsants , Epilepsy, Tonic-Clonic , Epileptic Syndromes , Pregnanolone/analogs & derivatives , Spasms, Infantile , Humans , Female , Child, Preschool , Male , Anticonvulsants/adverse effects , Follow-Up Studies , Treatment Outcome , Seizures/drug therapy , Seizures/chemically induced , Epilepsy, Tonic-Clonic/drug therapy , Double-Blind Method , Cyclin-Dependent Kinases/therapeutic use
3.
Dev Med Child Neurol ; 66(4): 456-468, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37771170

ABSTRACT

AIM: To differentiate phenotypic features of individuals with CDKL5 deficiency disorder (CDD) from those of individuals with other infantile-onset epilepsies. METHOD: We performed a retrospective cohort study and ascertained individuals with CDD and comparison individuals with infantile-onset epilepsy who had epilepsy gene panel testing. We reviewed records, updated variant classifications, and compared phenotypic features. Wilcoxon rank-sum tests and χ2 or Fisher's exact tests were performed for between-cohort comparisons. RESULTS: We identified 137 individuals with CDD (110 females, 80.3%; median age at last follow-up 3 year 11 months) and 313 individuals with infantile-onset epilepsies (156 females, 49.8%; median age at last follow-up 5 years 2 months; 35% with genetic diagnosis). Features reported significantly more frequently in the CDD group than in the comparison cohort included developmental and epileptic encephalopathy (81% vs 66%), treatment-resistant epilepsy (95% vs 71%), sequential seizures (46% vs 6%), epileptic spasms (66% vs 42%, with hypsarrhythmia in 30% vs 48%), regression (52% vs 29%), evolution to Lennox-Gastaut syndrome (23% vs 5%), diffuse hypotonia (72% vs 36%), stereotypies (69% vs 11%), paroxysmal movement disorders (29% vs 17%), cerebral visual impairment (94% vs 28%), and failure to thrive (38% vs 22%). INTERPRETATION: CDD, compared with other suspected or confirmed genetic epilepsies presenting in the first year of life, is more often characterized by a combination of treatment-resistant epilepsy, developmental and epileptic encephalopathy, sequential seizures, spasms without hypsarrhythmia, diffuse hypotonia, paroxysmal movement disorders, cerebral visual impairment, and failure to thrive. Defining core phenotypic characteristics will improve precision diagnosis and treatment.


Subject(s)
Brain Diseases , Epilepsy , Epileptic Syndromes , Movement Disorders , Spasms, Infantile , Status Epilepticus , Female , Humans , Male , Electroencephalography , Epilepsy/diagnosis , Epilepsy/genetics , Failure to Thrive , Muscle Hypotonia/genetics , Protein Serine-Threonine Kinases/genetics , Retrospective Studies , Seizures , Spasm , Spasms, Infantile/diagnosis , Spasms, Infantile/genetics , Vision Disorders
4.
Epilepsy Res ; 197: 107231, 2023 11.
Article in English | MEDLINE | ID: mdl-37751639

ABSTRACT

BACKGROUND: CDKL5 Deficiency Disorder (CDD) is a severe X-linked developmental and epileptic encephalopathy. Existing developmental outcome measures have floor effects and cannot capture incremental changes in symptoms. We modified the caregiver portion of a CDD clinical severity assessment (CCSA) and assessed content and response-process validity. METHODS: We conducted cognitive interviews with 15 parent caregivers of 1-39-year-old children with CDD. Caregivers discussed their understanding and concerns regarding appropriateness of both questions and answer options. Item wording and questionnaire structure were adjusted iteratively to ensure questions were understood as intended. RESULTS: The CCSA was refined during three rounds of cognitive interviews into two measures: (1) the CDD Developmental Questionnaire - Caregiver (CDQ-Caregiver) focused on developmental skills, and (2) the CDD Clinical Severity Assessment - Caregiver (CCSA-Caregiver) focused on symptom severity. Branching logic was used to ensure questions were age and skill appropriate. Initial pilot data (n = 11) suggested no floor effects. CONCLUSIONS: This study modified the caregiver portion of the initial CCSA and provided evidence for its content and response process validity.


Subject(s)
Epileptic Syndromes , Spasms, Infantile , Child , Humans , Infant , Child, Preschool , Adolescent , Young Adult , Adult , Caregivers/psychology , Spasms, Infantile/diagnosis , Spasms, Infantile/genetics , Epileptic Syndromes/diagnosis , Epileptic Syndromes/genetics , Surveys and Questionnaires , Protein Serine-Threonine Kinases/genetics
5.
JAMA Netw Open ; 6(7): e2324380, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37471090

ABSTRACT

Importance: Genomic advances inform our understanding of epilepsy and can be translated to patients as precision diagnoses that influence clinical treatment, prognosis, and counseling. Objective: To delineate the genetic landscape of pediatric epilepsy and clinical utility of genetic diagnoses for patients with epilepsy. Design, Setting, and Participants: This cohort study used phenotypic data from medical records and treating clinicians at a pediatric hospital to identify patients with unexplained pediatric-onset epilepsy. Exome sequencing was performed for 522 patients and available biological parents, and sequencing data were analyzed for single nucleotide variants (SNVs) and copy number variants (CNVs). Variant pathogenicity was assessed, patients were provided with their diagnostic results, and clinical utility was evaluated. Patients were enrolled from August 2018 to October 2021, and data were analyzed through December 2022. Exposures: Phenotypic features associated with diagnostic genetic results. Main Outcomes and Measures: Main outcomes included diagnostic yield and clinical utility. Diagnostic findings included variants curated as pathogenic, likely pathogenic (PLP), or diagnostic variants of uncertain significance (VUS) with clinical features consistent with the involved gene's associated phenotype. The proportion of the cohort with diagnostic findings, the genes involved, and their clinical utility, defined as impact on clinical treatment, prognosis, or surveillance, are reported. Results: A total of 522 children (269 [51.5%] male; mean [SD] age at seizure onset, 1.2 [1.4] years) were enrolled, including 142 children (27%) with developmental epileptic encephalopathy and 263 children (50.4%) with intellectual disability. Of these, 100 participants (19.2%) had identifiable genetic explanations for their seizures: 89 participants had SNVs (87 germline, 2 somatic mosaic) involving 69 genes, and 11 participants had CNVs. The likelihood of identifying a genetic diagnosis was highest in patients with intellectual disability (adjusted odds ratio [aOR], 2.44; 95% CI, 1.40-4.26), early onset seizures (aOR, 0.93; 95% CI, 0.88-0.98), and motor impairment (aOR, 2.19; 95% CI 1.34-3.58). Among 43 patients with apparently de novo variants, 2 were subsequently determined to have asymptomatic parents harboring mosaic variants. Of 71 patients who received diagnostic results and were followed clinically, 29 (41%) had documented clinical utility resulting from their genetic diagnoses. Conclusions and Relevance: These findings suggest that pediatric-onset epilepsy is genetically heterogeneous and that some patients with previously unexplained pediatric-onset epilepsy had genetic diagnoses with direct clinical implications.


Subject(s)
Epilepsy , Intellectual Disability , Male , Female , Humans , Cohort Studies , Exome Sequencing , Intellectual Disability/epidemiology , Epilepsy/diagnosis , Epilepsy/genetics , Seizures
6.
Epilepsia ; 64(7): 1821-1832, 2023 07.
Article in English | MEDLINE | ID: mdl-37114835

ABSTRACT

OBJECTIVE: We aimed to assess the treatment response of infantile-onset epileptic spasms (ES) in CDKL5 deficiency disorder (CDD) vs other etiologies. METHODS: We evaluated patients with ES from the CDKL5 Centers of Excellence and the National Infantile Spasms Consortium (NISC), with onset from 2 months to 2 years, treated with adrenocorticotropic hormone (ACTH), oral corticosteroids, vigabatrin, and/or the ketogenic diet. We excluded children with tuberous sclerosis complex, trisomy 21, or unknown etiology with normal development because of known differential treatment responses. We compared the two cohorts for time to treatment and ES remission at 14 days and 3 months. RESULTS: We evaluated 59 individuals with CDD (79% female, median ES onset 6 months) and 232 individuals from the NISC database (46% female, median onset 7 months). In the CDD cohort, seizures prior to ES were common (88%), and hypsarrhythmia and its variants were present at ES onset in 34%. Initial treatment with ACTH, oral corticosteroids, or vigabatrin started within 1 month of ES onset in 27 of 59 (46%) of the CDD cohort and 182 of 232 (78%) of the NISC cohort (p < .0001). Fourteen-day clinical remission of ES was lower for the CDD group (26%, 7/27) than for the NISC cohort (58%, 106/182, p = .0002). Sustained ES remission at 3 months occurred in 1 of 27 (4%) of CDD patients vs 96 of 182 (53%) of the NISC cohort (p < .0001). Comparable results were observed with longer lead time (≥1 month) or prior treatment. Ketogenic diet, used within 3 months of ES onset, resulted in ES remission at 1 month, sustained at 3 months, in at least 2 of 13 (15%) individuals with CDD. SIGNIFICANCE: Compared to the broad group of infants with ES, children with ES in the setting of CDD often experience longer lead time to treatment and respond poorly to standard treatments. Development of alternative treatments for ES in CDD is needed.


Subject(s)
Spasms, Infantile , Infant , Humans , Female , Male , Spasms, Infantile/drug therapy , Spasms, Infantile/genetics , Vigabatrin/therapeutic use , Time-to-Treatment , Anticonvulsants/therapeutic use , Adrenocorticotropic Hormone/therapeutic use , Spasm/drug therapy , Adrenal Cortex Hormones/therapeutic use , Treatment Outcome , Protein Serine-Threonine Kinases
7.
Epilepsia ; 64(7): e143-e147, 2023 07.
Article in English | MEDLINE | ID: mdl-37096745

ABSTRACT

Genetic variants in KCNQ2 are associated with a range of epilepsies, from self- limited (familial) neonatal-infantile epilepsy to developmental and epileptic encephalopathy (DEE). We retrospectively reviewed clinical data from eight patients with KCNQ2-related DEE who were treated with ezogabine. Treatment was initiated at a median age of 8 months (range, 7 weeks to 2.5 years) and continued for a median of 2.6 years (range, 7 months to 4.5 years). Five individuals had daily seizures at baseline and experienced at least 50% seizure reduction with treatment, sustained in four. One individual with two to four yearly seizures improved to rare events. Two individuals were seizure-free; treatment targeted cognition and development. Developmental improvements were reported in all eight patients. Weaning of ezogabine was associated with increased seizure frequency (N = 4), agitation and irritability (N = 2), poor sleep (N = 1), and developmental regression (N = 2). These data suggest that treatment with ezogabine is effective at reducing seizure burden and is associated with improved development. Minimal side effects were observed. Weaning was associated with increased seizures and behavioral disturbances in a subset. An approach targeting potassium channel dysfunction with ezogabine is warranted in patients with KCNQ2-related DEE.


Subject(s)
Epilepsy, Generalized , Epilepsy , Humans , Epilepsy/drug therapy , Epilepsy, Generalized/complications , KCNQ2 Potassium Channel/genetics , Mutation , Retrospective Studies , Seizures/drug therapy , Seizures/genetics , Infant , Child, Preschool
8.
J Neurodev Disord ; 15(1): 10, 2023 03 04.
Article in English | MEDLINE | ID: mdl-36870948

ABSTRACT

BACKGROUND: Developing biomarkers is a priority for drug development for all conditions, but vital in the rare neurodevelopmental disorders where sensitive outcome measures are lacking. We have previously demonstrated the feasibility and tracking of evoked potentials to disease severity in Rett syndrome and CDKL5 deficiency disorder. The aim of the current study is to characterize evoked potentials in two related developmental encephalopathies, MECP2 duplication syndrome and FOXG1 syndrome, and compare across all four groups to better understand the potential of these measures to serve as biomarkers of clinical severity for the developmental encephalopathies. METHODS: Visual and auditory evoked potentials were acquired from participants with MECP2 duplication syndrome and FOXG1 syndrome across five sites of the Rett Syndrome and Rett-Related Disorders Natural History Study. A group of age-matched individuals (mean = 7.8 years; range = 1-17) with Rett syndrome, CDKL5 deficiency disorder, and typically-developing participants served as a comparison group. The analysis focused on group-level differences as well as associations between the evoked potentials and measures of clinical severity from the Natural History Study. RESULTS: As reported previously, group-level comparisons revealed attenuated visual evoked potentials (VEPs) in participants with Rett syndrome (n = 43) and CDKL5 deficiency disorder (n = 16) compared to typically-developing participants. VEP amplitude was also attenuated in participants with MECP2 duplication syndrome (n = 15) compared to the typically-developing group. VEP amplitude correlated with clinical severity for Rett syndrome and FOXG1 syndrome (n = 5). Auditory evoked potential (AEP) amplitude did not differ between groups, but AEP latency was prolonged in individuals with MECP2 duplication syndrome (n = 14) and FOXG1 syndrome (n = 6) compared to individuals with Rett syndrome (n = 51) and CDKL5 deficiency disorder (n = 14). AEP amplitude correlated with severity in Rett syndrome and CDKL5 deficiency disorder. AEP latency correlated with severity in CDKL5 deficiency disorder, MECP2 duplication syndrome, and FOXG1 syndrome. CONCLUSIONS: There are consistent abnormalities in the evoked potentials in four developmental encephalopathies some of which correlate with clinical severity. While there are consistent changes amongst these four disorders, there are also condition specific findings that need to be further refined and validated. Overall, these results provide a foundation for further refinement of these measures for use in future clinical trials for these conditions.


Subject(s)
Rett Syndrome , Spasms, Infantile , Humans , Child , Evoked Potentials, Visual , Evoked Potentials
9.
Pediatr Neurol ; 138: 71-80, 2023 01.
Article in English | MEDLINE | ID: mdl-36403551

ABSTRACT

BACKGROUND: Evidence of the impact of genetic diagnosis on medical management in individuals with previously unexplained epilepsy is lacking in the literature. Our goal was to determine the impact of genetic diagnosis on medical management in a cohort of individuals with early-onset epilepsy. METHODS: We performed detailed phenotyping of individuals with epilepsy who underwent clinical genetic testing with an epilepsy panel and/or exome sequencing at Boston Children's Hospital between 2012 and 2019. We assessed the impact of genetic diagnosis on medical management. RESULTS: We identified a genetic etiology in 152 of 602 (25%) individuals with infantile- or childhood-onset epilepsy who underwent next-generation sequencing. Diagnosis impacted medical management in at least one category for 72% of patients (110 of 152) and in more than one category in 34%. Treatment was impacted in 45% of individuals, including 36% with impact on antiseizure medication choice, 7% on use of disease-specific vitamin or metabolic treatments, 3% on pathway-driven off-label use of medications, and 10% on discussion of gene-specific clinical trials. Care coordination was impacted in 48% of individuals. Counseling on a change in prognosis was reported in 28% of individuals, and 1% of individuals had a correction of diagnosis. Impact was documented in 13 of 13 individuals with neurotypical development and in 55% of those with epilepsy onset after age two years. CONCLUSION: We demonstrated meaningful impact of genetic diagnosis on medical care and prognosis in over 70% of individuals, including those with neurotypical development and age of epilepsy onset after age two years.


Subject(s)
Epilepsy , Child , Humans , Child, Preschool , Epilepsy/diagnosis , Epilepsy/drug therapy , Epilepsy/genetics , Genetic Testing , Prognosis , Exome Sequencing , High-Throughput Nucleotide Sequencing
10.
Am J Med Genet A ; 188(12): 3516-3524, 2022 12.
Article in English | MEDLINE | ID: mdl-35934918

ABSTRACT

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is caused by heterozygous or hemizygous variants in CDKL5 and is characterized by refractory epilepsy, cognitive and motor impairments, and cerebral visual impairment. CDKL5 has multiple transcripts, of which the longest transcripts, NM_003159 and NM_001037343, have been used historically in clinical laboratory testing. However, the transcript NM_001323289 is the most highly expressed in brain and contains 170 nucleotides at the 3' end of its last exon that are noncoding in other transcripts. Two truncating variants in this region have been reported in association with a CDD phenotype. To clarify the significance and range of phenotypes associated with late truncating variants in this region of the predominant transcript in the brain, we report detailed information on two individuals, updated clinical information on a third individual, and a summary of published and unpublished individuals reported in ClinVar. The two new individuals (one male and one female) each had a relatively mild clinical presentation including periods of pharmaco-responsive epilepsy, independent walking and limited purposeful communication skills. A previously reported male continued to have a severe phenotype. Overall, variants in this region demonstrate a range of clinical severity consistent with reports in CDD but with the potential for milder presentation.


Subject(s)
Epileptic Syndromes , Spasms, Infantile , Male , Female , Humans , Spasms, Infantile/diagnosis , Spasms, Infantile/genetics , Spasms, Infantile/complications , Epileptic Syndromes/genetics , Phenotype , Brain , Protein Serine-Threonine Kinases/genetics
11.
Brain Commun ; 4(4): fcac197, 2022.
Article in English | MEDLINE | ID: mdl-35974796

ABSTRACT

CDKL5 deficiency disorder is a debilitating developmental and epileptic encephalopathy for which no targeted treatment exists. A number of promising therapeutics are under development for CDKL5 deficiency disorder but a lack of validated biomarkers of brain function and clinical severity may limit the ability to objectively assess the efficacy of new treatments as they become available. To address this need, the current study quantified electrophysiological measures in individuals with CDKL5 deficiency disorder and the association between these parameters and clinical severity. Visual and auditory evoked potentials, as well as resting EEG, were acquired across 5 clinical sites from 26 individuals with CDKL5 deficiency disorder. Evoked potential and quantitative EEG features were calculated and compared with typically developing individuals in an age- and sex-matched cohort. Baseline and Year 1 data, when available, were analysed and the repeatability of the results was tested. Two clinician-completed severity scales were used for evaluating the clinical relevance of the electrophysiological parameters. Group-level comparisons revealed reduced visual evoked potential amplitude in CDKL5 deficiency disorder individuals versus typically developing individuals. There were no group differences in the latency of the visual evoked potentials or in the latency or amplitude of the auditory evoked potentials. Within the CDKL5 deficiency disorder group, auditory evoked potential amplitude correlated with disease severity at baseline as well as Year 1. Multiple quantitative EEG features differed between CDKL5 deficiency disorder and typically developing participants, including amplitude standard deviation, 1/f slope and global delta, theta, alpha and beta power. Several quantitative EEG features correlated with clinical severity, including amplitude skewness, theta/delta ratio and alpha/delta ratio. The theta/delta ratio was the overall strongest predictor of severity and also among the most repeatable qEEG measures from baseline to Year 1. Together, the present findings point to the utility of evoked potentials and quantitative EEG parameters as objective measures of brain function and disease severity in future clinical trials for CDKL5 deficiency disorder. The results also underscore the utility of the current methods, which could be similarly applied to the identification and validation of electrophysiological biomarkers of brain function for other developmental encephalopathies.

12.
CNS Drugs ; 36(6): 591-604, 2022 06.
Article in English | MEDLINE | ID: mdl-35633486

ABSTRACT

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a developmental and epileptic encephalopathy with infantile-onset epilepsy. Most individuals with CDD develop refractory epilepsy with multiple seizure types. Management of seizures in CDD remains challenging for clinicians given the highly refractory nature of seizures and the limited number of disease-specific studies that offer a high level of evidence. Epileptic spasms are the most common seizure type in CDD and are more often refractory to standard first-line treatment than are spasms of other etiologies. In other seizure types, the effectiveness of antiseizure medications is limited and wanes over time. Ketogenic diet and palliative surgical treatments have both had mixed results in observational studies. When treating refractory seizures in CDD, we recommend carefully balancing seizure control and treatment-related side effects to optimize each individual's overall quality of life. Clinical trials of medications targeting epilepsy in CDD have been conducted, and additional investigational small molecules, gene therapy, and other disease-modifying therapies are in development for CDD.


Subject(s)
Epilepsy , Spasms, Infantile , Epilepsy/etiology , Epilepsy/genetics , Epileptic Syndromes , Humans , Protein Serine-Threonine Kinases , Quality of Life , Seizures , Spasm , Spasms, Infantile/drug therapy , Spasms, Infantile/genetics
14.
Lancet Neurol ; 21(5): 417-427, 2022 05.
Article in English | MEDLINE | ID: mdl-35429480

ABSTRACT

BACKGROUND: CDKL5 deficiency disorder (CDD) is a rare, X-linked, developmental and epileptic encephalopathy characterised by severe global developmental impairment and seizures that can begin in the first few months after birth and are often treatment refractory. Ganaxolone, an investigational neuroactive steroid, reduced seizure frequency in an open-label, phase 2 trial that included patients with CDD. We aimed to further assess the efficacy and safety of ganaxolone in patients with CDD-associated refractory epilepsy. METHODS: In the double-blind phase of this randomised, placebo-controlled, phase 3 trial, done at 39 outpatient clinics in eight countries (Australia, France, Israel, Italy, Poland, Russia, the UK, and the USA), patients were eligible if they were aged 2-21 years with a pathogenic or probably pathogenic CDKL5 variant and at least 16 major motor seizures (defined as bilateral tonic, generalised tonic-clonic, bilateral clonic, atonic, or focal to bilateral tonic-clonic) per 28 days in each 4-week period of an 8-week historical period. After a 6-week prospective baseline period, patients were randomly assigned (1:1) via an interactive web response system to receive either enteral adjunctive ganaxolone or matching enteral adjunctive placebo (maximum dose 63 mg/kg per day for patients weighing ≤28 kg or 1800 mg/day for patients weighing >28 kg) for 17 weeks. Patients, caregivers, investigators (including those analysing data), trial staff, and the sponsor (other than the investigational product manager) were masked to treatment allocation. The primary efficacy endpoint was percentage change in median 28-day major motor seizure frequency from the baseline period to the 17-week double-blind phase and was analysed (using a Wilcoxon-rank sum test) in all patients who received at least one dose of trial treatment and for whom baseline data were available. Safety (compared descriptively across groups) was analysed in all patients who received at least one dose of trial treatment. This study is registered with ClinicalTrials.gov, NCT03572933, and the open-label extension phase is ongoing. FINDINGS: Between June 25, 2018, and July 2, 2020, 114 patients were screened for eligibility, of whom 101 (median age 6 years [IQR 3 to 10]) were randomly assigned to receive either ganaxolone (n=50) or placebo (n=51). All patients received at least one dose of a study drug, but seizure frequency for one patient in the ganaxolone group was not recorded at baseline and so the primary endpoint was analysed in a population of 100 patients. There was a median percentage change in 28-day major motor seizure frequency of -30·7% (IQR -49·5 to -1·9) in the ganaxolone group and of -6·9% (-24·1 to 39·7) in the placebo group (p=0·0036). The Hodges-Lehmann estimate of median difference in responses to ganaxolone versus placebo was -27·1% (95% CI -47·9 to - 9·6). Treatment-emergent adverse events occurred in 43 (86%) of 50 patients in the ganaxolone group and in 45 (88%) of 51 patients in the placebo group. Somnolence, pyrexia, and upper respiratory tract infections occurred in at least 10% of patients in the ganaxolone group and more frequently than in the placebo group. Serious adverse events occurred in six (12%) patients in the ganaxolone group and in five (10%) patients in the placebo group. Two (4%) patients in the ganaxolone group and four (8%) patients in the placebo group discontinued the trial. There were no deaths in the double-blind phase. INTERPRETATION: Ganaxolone significantly reduced the frequency of CDD-associated seizures compared with placebo and was generally well tolerated. Results from what is, to our knowledge, the first controlled trial in CDD suggest a potential treatment benefit for ganaxolone. Long-term treatment is being assessed in the ongoing open-label extension phase of this trial. FUNDING: Marinus Pharmaceuticals.


Subject(s)
Epileptic Syndromes , Pregnanolone , Spasms, Infantile , Child , Child, Preschool , Double-Blind Method , Epileptic Syndromes/drug therapy , Epileptic Syndromes/enzymology , Humans , Infant , Pregnanolone/analogs & derivatives , Prospective Studies , Protein Serine-Threonine Kinases/deficiency , Seizures/drug therapy , Seizures/enzymology , Spasms, Infantile/drug therapy , Spasms, Infantile/enzymology , Treatment Outcome
15.
J Neurodev Disord ; 13(1): 40, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34530725

ABSTRACT

BACKGROUND: CDKL5 deficiency disorder (CDD) is associated with refractory infantile onset epilepsy, global developmental delay, and variable features that include sleep, behavioral disturbances, and movement disorders. Current treatment is primarily symptom-based and informed by experience in caring for this population. METHODS: We describe medication and non-medication approaches to treatment of epilepsy and additional key neurologic symptoms (sleep disturbances, behavioral issues, movement disorders, and swallowing dysfunction) in a cohort of 177 individuals meeting criteria for CDD, 154 evaluated at 4 CDKL5 Centers of Excellence in the USA and 40 identified through the NIH Natural History Study of Rett and Related Disorders. RESULTS: The four most frequently prescribed anti-seizure medications were broad spectrum, prescribed in over 50% of individuals. While the goal was not to ascertain efficacy, we obtained data from 86 individuals regarding response to treatment, with 2-week response achieved in 14-48% and sustained 3-month response in 5-36%, of those with known response. Additional treatments for seizures included cannabis derivatives, tried in over one-third of individuals, and clinical trial medications. In combination with pharmacological treatment, 50% of individuals were treated with ketogenic diet for attempted seizure control. Surgical approaches included vagus nerve stimulators, functional hemispherectomy, and corpus callosotomy, but numbers were too limited to assess response. Nearly one-third of individuals received pharmacologic treatment for sleep disturbances, 13% for behavioral dysregulation and movement disorders, and 43% had gastrostomy tubes. CONCLUSIONS: Treatment for neurologic features of CDD is currently symptom-based and empiric rather than CDD-specific, though clinical trials for CDD are emerging. Epilepsy in this population is highly refractory, and no specific anti-seizure medication was associated with improved seizure control. Ketogenic diet is commonly used in patients with CDD. While behavioral interventions are commonly instituted, information on the use of medications for sleep, behavioral management, and movement disorders is sparse and would benefit from further characterization and optimization of treatment approaches. The heterogeneity in treatment approaches highlights the need for systematic review and guidelines for CDD. Additional disease-specific and disease-modifying treatments are in development.


Subject(s)
Epilepsy , Epileptic Syndromes , Spasms, Infantile , Epilepsy/genetics , Epilepsy/therapy , Epileptic Syndromes/genetics , Epileptic Syndromes/therapy , Humans , Protein Serine-Threonine Kinases/genetics , Spasms, Infantile/genetics , Spasms, Infantile/therapy
16.
J Child Neurol ; 36(11): 998-1006, 2021 10.
Article in English | MEDLINE | ID: mdl-34378447

ABSTRACT

CDKL5 deficiency disorder (CDD) results in early-onset seizures and severe developmental impairments. A CDD clinical severity assessment (CCSA) was previously developed with clinician and parent-report items to capture information on a range of domains. Consistent with US Food and Drug Administration (FDA) guidelines, content validation is the first step in evaluating the psychometric properties of an outcome measure. The aim of this study was to validate the content of the clinician-reported items in the CCSA (CCSA-Clinician). Eight neurologists leading the USA CDD Center of Excellence clinics were interviewed using the "think aloud" technique to critique 26 clinician-reported items. Common themes were aggregated, and a literature search of related assessments informed item modifications. The clinicians then participated in 2 consensus meetings to review themes and finalize the items. A consensus was achieved for the content of the CCSA-Clinician. Eight of the original items were omitted, 11 items were added, and the remaining 18 items were revised. The final 29 items were classified into 2 domains: functioning and neurologic impairments. This study enabled refinement of the CCSA-Clinician and provided evidence for its content validity. This preliminary validation is essential before field testing and further validation, in order to advance the instrument toward clinical trial readiness.


Subject(s)
Epileptic Syndromes/diagnosis , Neurologists/statistics & numerical data , Outcome Assessment, Health Care/methods , Spasms, Infantile/diagnosis , Child , Female , Humans , Interviews as Topic , Male , Patient Acuity , Psychometrics , Reproducibility of Results , Surveys and Questionnaires
17.
Dev Med Child Neurol ; 63(11): 1308-1315, 2021 11.
Article in English | MEDLINE | ID: mdl-34028805

ABSTRACT

AIM: To characterize the neuro-ophthalmological phenotype of cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) and assess visual acuity as a reproducible, quantitative outcome measure. METHOD: We retrospectively analyzed clinical data from patients with CDD. Complete neuro-ophthalmological assessments, including visual acuity, were evaluated. RESULTS: Of 26 patients (22 females, four males; median age 4y, interquartile range 2y 1mo-7y 10mo), cerebral visual impairment (CVI), defined as visual dysfunction in the absence of ocular or anterior visual pathway abnormalities, was diagnosed in all those over 2 years of age. Ophthalmological examinations revealed nystagmus in 10 patients and strabismus in 24 patients. Visual acuity was measured in 24 patients, by preferential looking in all and by sweep visual evoked potential in 13. Visual acuities were lower than age expectations and demonstrated improvement in the first 3 years. Adjusting for age and sex, average preferential looking visual acuity after 2 years of age was higher in patients with intact mobility than in those who were non-mobile. INTERPRETATION: CVI was observed in patients with CDD. Visual acuity improved over time and correlated with mobility. Visual acuity, as a quantifiable measure of visual function, should be considered as an outcome measure in pre-clinical and clinical studies for CDD. What this paper adds Cerebral visual impairment is highly prevalent in cyclin-dependent kinase-like 5 deficiency disorder (CDD). Visual acuity is a measurable quantitative outcome measure in CDD. Visual acuity in CDD correlates with gross motor ability.


Subject(s)
Epileptic Syndromes/physiopathology , Evoked Potentials, Visual/physiology , Spasms, Infantile/physiopathology , Vision Disorders/physiopathology , Vision, Ocular/physiology , Visual Pathways/physiopathology , Child , Child, Preschool , Epileptic Syndromes/genetics , Female , Humans , Male , Phenotype , Retrospective Studies , Spasms, Infantile/genetics , Vision Disorders/genetics
18.
Stem Cell Res ; 53: 102276, 2021 05.
Article in English | MEDLINE | ID: mdl-33714067

ABSTRACT

CDKL5 Deficiency Disorder (CDD) is a rare X-linked monogenic developmental encephalopathy that is estimated to affect 1:42,000 live births. CDD is caused by pathogenic variants in the CDKL5 gene and is observed in both male and female patients. Here, we report the generation and characterization of induced pluripotent stem cells (iPSCs) derived from fibroblasts of six unrelated CDD patients-three males and three females. These patients are clinically diagnosed to present with classic CDD phenotypes, including refractory epilepsy and global developmental delay, and are being followed in a longitudinal clinical study.


Subject(s)
Epileptic Syndromes , Induced Pluripotent Stem Cells , Spasms, Infantile , Female , Humans , Male , Protein Serine-Threonine Kinases/genetics , Spasms, Infantile/genetics
19.
Ann Neurol ; 89(3): 573-586, 2021 03.
Article in English | MEDLINE | ID: mdl-33325057

ABSTRACT

OBJECTIVE: We aimed to characterize the phenotypic spectrum and functional consequences associated with variants in the gene GABRB2, coding for the γ-aminobutyric acid type A (GABAA ) receptor subunit ß2. METHODS: We recruited and systematically evaluated 25 individuals with variants in GABRB2, 17 of whom are newly described and 8 previously reported with additional clinical data. Functional analysis was performed using a Xenopus laevis oocyte model system. RESULTS: Our cohort of 25 individuals from 22 families with variants in GABRB2 demonstrated a range of epilepsy phenotypes from genetic generalized epilepsy to developmental and epileptic encephalopathy. Fifty-eight percent of individuals had pharmacoresistant epilepsy; response to medications targeting the GABAergic pathway was inconsistent. Developmental disability (present in 84%) ranged from mild intellectual disability to severe global disability; movement disorders (present in 44%) included choreoathetosis, dystonia, and ataxia. Disease-associated variants cluster in the extracellular N-terminus and transmembrane domains 1-3, with more severe phenotypes seen in association with variants in transmembrane domains 1 and 2 and the allosteric binding site between transmembrane domains 2 and 3. Functional analysis of 4 variants in transmembrane domains 1 or 2 (p.Ile246Thr, p.Pro252Leu, p.Ile288Ser, p.Val282Ala) revealed strongly reduced amplitudes of GABA-evoked anionic currents. INTERPRETATION: GABRB2-related epilepsy ranges broadly in severity from genetic generalized epilepsy to developmental and epileptic encephalopathies. Developmental disability and movement disorder are key features. The phenotypic spectrum is comparable to other GABAA receptor-encoding genes. Phenotypic severity varies by protein domain. Experimental evidence supports loss of GABAergic inhibition as the mechanism underlying GABRB2-associated neurodevelopmental disorders. ANN NEUROL 2021;89:573-586.


Subject(s)
Epilepsy/physiopathology , Movement Disorders/physiopathology , Neurodevelopmental Disorders/physiopathology , Receptors, GABA-A/genetics , Adolescent , Adult , Animals , Ataxia/genetics , Ataxia/physiopathology , Athetosis/genetics , Athetosis/physiopathology , Child , Child, Preschool , Chorea/genetics , Chorea/physiopathology , Cohort Studies , Developmental Disabilities/genetics , Developmental Disabilities/physiopathology , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/physiopathology , Dystonia/genetics , Dystonia/physiopathology , Epilepsy/genetics , Female , Genotype , Humans , Intellectual Disability/genetics , Intellectual Disability/physiopathology , Male , Middle Aged , Movement Disorders/genetics , Mutation, Missense , Neurodevelopmental Disorders/genetics , Oocytes , Patch-Clamp Techniques , Phenotype , Protein Domains/genetics , Xenopus laevis , Young Adult
20.
Epilepsia ; 61(3): 387-399, 2020 03.
Article in English | MEDLINE | ID: mdl-32090326

ABSTRACT

OBJECTIVE: Voltage-gated sodium channels (SCNs) share similar amino acid sequence, structure, and function. Genetic variants in the four human brain-expressed SCN genes SCN1A/2A/3A/8A have been associated with heterogeneous epilepsy phenotypes and neurodevelopmental disorders. To better understand the biology of seizure susceptibility in SCN-related epilepsies, our aim was to determine similarities and differences between sodium channel disorders, allowing us to develop a broader perspective on precision treatment than on an individual gene level alone. METHODS: We analyzed genotype-phenotype correlations in large SCN-patient cohorts and applied variant constraint analysis to identify severe sodium channel disease. We examined temporal patterns of human SCN expression and correlated functional data from in vitro studies with clinical phenotypes across different sodium channel disorders. RESULTS: Comparing 865 epilepsy patients (504 SCN1A, 140 SCN2A, 171 SCN8A, four SCN3A, 46 copy number variation [CNV] cases) and analysis of 114 functional studies allowed us to identify common patterns of presentation. All four epilepsy-associated SCN genes demonstrated significant constraint in both protein truncating and missense variation when compared to other SCN genes. We observed that age at seizure onset is related to SCN gene expression over time. Individuals with gain-of-function SCN2A/3A/8A missense variants or CNV duplications share similar characteristics, most frequently present with early onset epilepsy (<3 months), and demonstrate good response to sodium channel blockers (SCBs). Direct comparison of corresponding SCN variants across different SCN subtypes illustrates that the functional effects of variants in corresponding channel locations are similar; however, their clinical manifestation differs, depending on their role in different types of neurons in which they are expressed. SIGNIFICANCE: Variant function and location within one channel can serve as a surrogate for variant effects across related sodium channels. Taking a broader view on precision treatment suggests that in those patients with a suspected underlying genetic epilepsy presenting with neonatal or early onset seizures (<3 months), SCBs should be considered.


Subject(s)
Epileptic Syndromes/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , NAV1.2 Voltage-Gated Sodium Channel/genetics , NAV1.3 Voltage-Gated Sodium Channel/genetics , NAV1.6 Voltage-Gated Sodium Channel/genetics , Sodium Channels/genetics , Age of Onset , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Child , Child, Preschool , Codon, Nonsense , DNA Copy Number Variations , Electroencephalography , Epileptic Syndromes/drug therapy , Epileptic Syndromes/physiopathology , Female , Gain of Function Mutation , Gene Deletion , Gene Duplication , Gene Expression , Gene Expression Regulation, Developmental , Genotype , Humans , Infant , Infant, Newborn , Loss of Function Mutation , Male , Mutation, Missense , NAV1.1 Voltage-Gated Sodium Channel/metabolism , NAV1.2 Voltage-Gated Sodium Channel/metabolism , NAV1.3 Voltage-Gated Sodium Channel/metabolism , NAV1.6 Voltage-Gated Sodium Channel/metabolism , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/physiopathology , Phenotype , Sodium Channel Blockers/therapeutic use , Sodium Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...