Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Data Brief ; 53: 110246, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38533117

ABSTRACT

The Afghan pika Ochotona rufescens (Gray, 1842) is widely distributed across the mountains of Afghanistan, Iran, Pakistan, and southwestern Turkmenistan, most often at elevations between 2,000 and 3,000 m. Here we present, for the first time, the complete mitochondrial genomes of two specimens of the nominotypical subspecies Ochotona rufescens rufescens, de novo assembled from Illumina short reads of fragmented probe-enriched DNA. The lengths of the circular mitogenomes are 16,408 bp and 16,407 bp, respectively. Both mitogenomes contain 13 protein-coding genes (PCGs), two ribosomal RNAs (16S rRNA and 12S rRNA), 22 transfer RNA genes, and a control region. The gene NAD6 and the tRNA (Gln), tRNA (Ala), tRNA (Asn), tRNA (Cys), tRNA (Tyr), tRNA (Ser), tRNA (Glu), and tRNA (Pro) are encoded on the light strand while the rest are encoded on the heavy strand. The overall nucleotide composition was ∼30% for A, 25% for T, 15% for G, and 29% for C. The mitogenome data are available in the GenBank under the accession numbers ON859136 and ON859137.

2.
Mol Phylogenet Evol ; 193: 107999, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38160993

ABSTRACT

Traditional classification of many animals, including birds, has been highly dependent on external morphological characters like plumage coloration. However, both bioacoustics and genetic or genomic data have revolutionized our understanding of the relationships of certain lineages and led to sweeping taxonomic re-organizations. In this study, we present a case of erroneous delimitation of genus boundaries in the species-rich flycatcher subfamily Niltavinae. Genera within this subfamily have historically been delineated based on blue versus brown male body plumage until recent studies based on a few mitochondrial and nuclear loci unearthed several cases of generic misclassification. Here we use extensive bioacoustic data from 43 species and genomic data from 28 species for a fundamental reclassification of species in the Niltavinae. Our study reveals that song is an important trait to classify these birds even at the genus level, whereas plumage traits exhibit ample convergence and have led to numerous historic misattributions. Our taxonomic re-organization leads to new biogeographic limits of major genera, such that the genus Cyornis now only extends as far east as the islands of Sulawesi, Sula, and Banggai, whereas Eumyias is redefined to extend far beyond Wallace's Line to the islands of Seram and Timor. Our conclusions advise against an over-reliance on morphological traits and underscore the importance of integrative datasets.


Subject(s)
Passeriformes , Songbirds , Animals , Male , Songbirds/genetics , Phylogeny , Passeriformes/genetics , Genomics , Genome
3.
Syst Biol ; 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38157277

ABSTRACT

Different genomic regions may reflect conflicting phylogenetic topologies primarily due to incomplete lineage sorting and/or gene flow. Genomic data are necessary to reconstruct the true species tree and explore potential causes of phylogenetic conflict. Here, we investigate the phylogenetic relationships of four Emberiza species (Aves: Emberizidae) and discuss the potential causes of the observed mitochondrial non-monophyly of Emberiza godlewskii (Godlewski's bunting) using phylogenomic analyses based on whole genome resequencing data from 41 birds. Analyses based on both the whole mitochondrial genome and ~39 kilobases from the non-recombining W chromosome reveal sister relationships between each the northern and southern populations of E. godlewskii with E. cioides and E. cia, respectively. In contrast, the monophyly of E. godlewskii is reflected by the phylogenetic signal of autosomal and Z chromosomal sequence data as well as demographic inference analyses, which - in combination - support the following tree topology: (((E. godlewskii, E. cia), E. cioides), E. jankowskii). Using D-statistics, we detected multiple gene flow events among different lineages, indicating pervasive introgressive hybridization within this clade. Introgression from an unsampled lineage that is sister to E. cioides or introgression from an unsampled mitochondrial + W chromosomal lineage of E. cioides into northern E. godlewskii may explain the phylogenetic conflict between the species tree estimated from genome-wide data versus mtDNA/W tree topologies. These results underscore the importance of using genomic data for phylogenetic reconstruction and species delimitation.

4.
Vaccine ; 41(29): 4199-4205, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37271703

ABSTRACT

BACKGROUND: Long duration trial data for two-dose COVID-19 vaccines primary series' are uncommon due to unblinding and additional doses. We report one-year follow-up results from a phase 1/2 trial of AZD1222 (ChAdOx1 nCoV-19) in Japan. METHODS: Adults (n = 256) seronegative for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) were stratified by age, 18-55 (n = 128), 56-69 (n = 86) and ≥70-year-old (n = 42), and randomized 3:1 to AZD1222 or placebo. Safety, immunogenicity, and exploratory efficacy data were collected until study Day 365. RESULTS: Safety was consistent with previous reports. In AZD1222 vaccinees, humoral responses against SARS-CoV-2 steadily declined over time. By Day 365, anti-SARS-CoV-2 spike-binding (spike) and receptor-binding domain (RBD) mean antibody titers remained above Day 15 levels and pseudovirus neutralizing antibodies were undetectable in many participants. CONCLUSIONS: AZD1222 is immunogenic and well tolerated in Japanese adults. Expected waning in anti-SARS-CoV-2 humoral responses was observed; spike and RBD antibody titers remained elevated. (ClinicalTrials.gov: NCT04568031).


Subject(s)
COVID-19 , ChAdOx1 nCoV-19 , Adult , Humans , Adolescent , Young Adult , Middle Aged , Aged , COVID-19 Vaccines/adverse effects , Japan , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Immunogenicity, Vaccine
5.
Evol Lett ; 7(1): 24-36, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-37065434

ABSTRACT

Tropical islands are renowned as natural laboratories for evolutionary study. Lineage radiations across tropical archipelagos are ideal systems for investigating how colonization, speciation, and extinction processes shape biodiversity patterns. The expansion of the island thrush across the Indo-Pacific represents one of the largest yet most perplexing island radiations of any songbird species. The island thrush exhibits a complex mosaic of pronounced plumage variation across its range and is arguably the world's most polytypic bird. It is a sedentary species largely restricted to mountain forests, yet it has colonized a vast island region spanning a quarter of the globe. We conducted a comprehensive sampling of island thrush populations and obtained genome-wide SNP data, which we used to reconstruct its phylogeny, population structure, gene flow, and demographic history. The island thrush evolved from migratory Palearctic ancestors and radiated explosively across the Indo-Pacific during the Pleistocene, with numerous instances of gene flow between populations. Its bewildering plumage variation masks a biogeographically intuitive stepping stone colonization path from the Philippines through the Greater Sundas, Wallacea, and New Guinea to Polynesia. The island thrush's success in colonizing Indo-Pacific mountains can be understood in light of its ancestral mobility and adaptation to cool climates; however, shifts in elevational range, degree of plumage variation and apparent dispersal rates in the eastern part of its range raise further intriguing questions about its biology.

7.
Mol Phylogenet Evol ; 178: 107646, 2023 01.
Article in English | MEDLINE | ID: mdl-36265831

ABSTRACT

The Old World flycatchers, robins and chats (Aves, Muscicapidae) are a diverse songbird family with over three hundred species. Despite continuous efforts over the past two decades, there is still no comprehensive and well-resolved species-level phylogeny for Muscicapidae. Here we present a supermatrix phylogeny that includes all 50 currently recognized genera and ca. 92% of all the species, built using data from up to 15 mitochondrial and 13 nuclear loci. In addition to assembling nucleotide sequences available in public databases, we also extracted sequences from the genome assemblies and raw sequencing reads from GenBank and included a few unpublished sequences. Our analyses resolved the phylogenetic position for several previously unsampled taxa, for example, the Grand Comoro Flycatcher Humblotia flavirostris, the Collared Palm Thrush Cichladusa arquata, and the Taiwan Whistling-Thrush Myophonus insularis, etc. We also provide taxonomic recommendations for genera that exhibit paraphyly or polyphyly. Our results suggest that Muscicapidae diverged from Turdidae (thrushes and allies) in the early Miocene, and the most recent common ancestors for the four subfamilies (Muscicapinae, Niltavinae, Cossyphinae and Saxicolinae) all arose around the middle Miocene.


Subject(s)
Gadiformes , Passeriformes , Songbirds , Animals , Songbirds/genetics , Phylogeny , Passeriformes/genetics , Gadiformes/genetics , Cell Nucleus/genetics , DNA, Mitochondrial/genetics
8.
Mol Ecol ; 32(2): 381-392, 2023 01.
Article in English | MEDLINE | ID: mdl-36326561

ABSTRACT

The seasonal migration of birds is a fascinating natural wonder. Avian migratory behaviour changes are common and are probably a polygenic process as avian migration is governed by multiple correlated components with a variable genetic basis. However, the genetic and phenotypic changes involving migration changes are poorly studied. Using one annotated near-chromosomal level de novo genome assembly, 50 resequenced genomes, hundreds of morphometric data and species distribution information, we investigated population structure and genomic and phenotypic differences associated with differences in migratory behaviour in a songbird species, Yellow-throated Bunting Emberiza elegans (Aves: Emberizidae). Population genomic analyses reveal extensive gene flow between the southern resident and the northern migratory populations of this species. The hand-wing index is significantly lower in the resident populations than in the migratory populations, indicating reduced flight efficiency of the resident populations. Here, we discuss the possibility that nonmigratory populations may have originated from migratory populations though migration loss. We further infer that the alterations of genes related to energy metabolism, nervous system and circadian rhythm may have played major roles in regulating migration change. Our study sheds light on phenotypic and polygenic changes involving migration change.


Subject(s)
Passeriformes , Songbirds , Animals , Songbirds/genetics , Photoperiod , Animal Migration/physiology , Seasons , Genomics
9.
Data Brief ; 42: 108314, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35928589

ABSTRACT

The pygmy rabbit Brachylagus idahoensis (Merriam, 1891) is the smallest extant leporid, which naturally occurs in the Great Basin and adjacent areas in western parts of the United States of America. Its distribution is strongly associated with the sagebrush (Artemisia ssp.) vegetation. Here we present, for the first time, the complete mitochondrial genome of Brachylagus idahoensis, de novo assembled from Illumina short reads of fragmented probe-enriched DNA. The circular mitogenome is 17,021 bp in length and contains 13 protein-coding genes (PCGs), two ribosomal RNAs (16S rRNA and 12S rRNA), 22 transfer RNA genes, and a control region. The gene NAD6 and the tRNA(Gln), tRNA(Ala), tRNA(Asn), tRNA(Cys), tRNA(Tyr), tRNA(Ser), tRNA(Glu) and tRNA(Pro) are encoded on the light strand while the rest are encoded on the heavy strand. The overall nucleotide composition was 30.78% for A, 28.5% for T, 13.62% for G and 27.08% for C. The mitogenome data are available in the GenBank under the accession number OL436257.

10.
Mol Phylogenet Evol ; 175: 107580, 2022 10.
Article in English | MEDLINE | ID: mdl-35810968

ABSTRACT

Several cryptic avian species have been validated by recent integrative taxonomic efforts in the Sino-Himalayan mountains, indicating that avian diversity in this global biodiversity hotspot may be underestimated. In the present study, we investigated species limits in the genus Tarsiger, the bush robins, a group of montane forest specialists with high species richness in the Sino-Himalayan region. Based on comprehensive sampling of all 11 subspecies of the six currently recognized species, we applied an integrative taxonomic approach by combining multilocus, acoustic, plumage and morphometric analyses. Our results reveal that the isolated north-central Chinese populations of Tarsiger cyanurus, described as the subspecies albocoeruleus but usually considered invalid, is distinctive in genetics and vocalisation, but only marginally differentiated in morphology. We also found the Taiwan endemic T. indicus formosanus to be distinctive in genetics, song and morphology from T. i. indicus and T. i. yunnanensis of the Sino-Himalayan mountains. Moreover, Bayesian species delimitation using BPP suggests that both albocoeruleus and formosanus merit full species status. We propose their treatment as 'Qilian Bluetail' T. albocoeruleus and 'Taiwan Bush Robin' T. formosanus, respectively.


Subject(s)
Songbirds , Animals , Bayes Theorem , Biodiversity , Forests , Phylogeny
11.
Int J Infect Dis ; 114: 165-174, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34688944

ABSTRACT

BACKGROUND: Immunogenicity and safety of the AZD1222 (ChAdOx1 nCoV-19) vaccine was evaluated in Japanese adults in an ongoing phase 1/2, randomized, double-blind, parallel-group, placebo-controlled, multi-centre trial (NCT04568031). METHODS: Adults (n=256, age ≥18 years) seronegative for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) were stratified by age into 18-55- (n=128), 56-69- (n=86) and ≥70-year-old cohorts (n=42), and randomized 3:1 to receive AZD1222 or placebo (two intramuscular injections 4 weeks apart). Immunogenicity and safety were coprimary endpoints. Data collected up to Day 57 are reported. RESULTS: Positive seroresponses to SARS-CoV-2 spike and receptor-binding domain antigens were seen in all 174 participants who received two doses of AZD1222. Neutralizing antibody seroresponses were seen in 67.5%, 60.3% and 50.0% of participants receiving AZD1222 aged 18-55, 56-69 and ≥70 years, respectively. Solicited adverse events (AEs) were typically mild/moderate in severity and included pain and tenderness at the injection site, malaise, fatigue, muscle pain and headache. Common unsolicited AEs included pain and tenderness at the injection site, fatigue and elevated body temperature. No vaccine-related serious AEs or deaths were reported. CONCLUSIONS: AZD1222 elicited a strong humoral immune response against SARS-CoV-2, and was well tolerated in Japanese participants, including elderly participants.


Subject(s)
COVID-19 , ChAdOx1 nCoV-19 , Adolescent , Adult , Aged , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , ChAdOx1 nCoV-19/adverse effects , Double-Blind Method , Humans , Japan , Middle Aged , SARS-CoV-2 , Young Adult
12.
Integr Comp Biol ; 61(4): 1343-1362, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34143205

ABSTRACT

Brightly colored manakin (Aves: Pipridae) males are known for performing acrobatic displays punctuated by non-vocal sounds (sonations) in order to attract dull colored females. The complexity of the display sequence and assortment of display elements involved (e.g., sonations, acrobatic maneuvers, and cooperative performances) varies considerably across manakin species. Species-specific display elements coevolve with display-distinct specializations of the neuroanatomical, muscular, endocrine, cardiovascular, and skeletal systems in the handful of species studied. Conducting a broader comparative study, we previously found positive associations between display complexity and both brain mass and body mass across eight manakin genera, indicating selection for neural and somatic expansion to accommodate display elaboration. Whether this gross morphological variation is due to overall brain and body mass expansion (concerted evolution) versus size increases in only functionally relevant brain regions and growth of particular body ("somatic") features (mosaic evolution) remains to be explored. Here, we test the hypothesis that cross-species variation in male brain mass and body mass is driven by mosaic evolution. We predicted positive associations between display complexity and variation in the volume of the cerebellum and sensorimotor arcopallium, brain regions which have roles in sensorimotor processes, and learning and performance of precisely timed and sequenced thoughts and movements, respectively. In contrast, we predicted no associations between the volume of a limbic arcopallial nucleus or a visual thalamic nucleus and display complexity as these regions have no-specific functional relationship to display behavior. For somatic features, we predicted that the relationship between body mass and complexity would not include contributions of tarsus length based on a recent study suggesting selection on tarsus length is less labile than body mass. We tested our hypotheses in males from 12 manakin species and a closely related flycatcher. Our analyses support mosaic evolution of neural and somatic features functionally relevant to display and indicate that sexual selection for acrobatic complexity increases the capacity for procedural learning via cerebellar enlargement and may decrease maneuverability via increases in tarsus length.


Subject(s)
Passeriformes , Songbirds , Animals , Brain , Female , Male , Phenotype , Species Specificity
13.
Zoolog Sci ; 38(1): 72-81, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33639721

ABSTRACT

Eastern broad-toothed field mouse, Apodemus mystacinus, is a rocky habitat dwelling rodent distributed in Asia Minor, the Levant, the Caucasus, and the Zagros Mountains. In this study, we investigated the phylogenetic relationship between different populations of A. mystacinus throughout its range, based on the mitochondrial cytb marker. Phylogenetic analyses revealed the existence of five separately evolving lineages within A. mystacinus, of which two previously unrecognized lineages were identified in the Zagros Mountains and the Levant. Divergence between two major clades of the subgenus Karstomys, corresponding to A. mystacinus and Apodemus epimelas, is inferred to coincide with the Messinian Salinity Crisis (Late Miocene), whereas the splits between major lineages of A. mystacinus are inferred to have occurred during the Pleistocene. Colonization of the Zagros may have occurred from different refugia via eastward migration of the Turkish population and then again by a more recent colonization from the Caucasus, after reopening of the land corridor between the Caucasus and the Zagros Mountains during the Holocene drought.


Subject(s)
Murinae/classification , Murinae/genetics , Phylogeography , Animals , DNA, Mitochondrial , Genetic Variation , Haplotypes , Refugium , Sequence Analysis, DNA
15.
Mol Phylogenet Evol ; 154: 106994, 2021 01.
Article in English | MEDLINE | ID: mdl-33250446

ABSTRACT

Species delimitation has advanced from a purely phenotypic exercise to a branch of science that integrates multiple sources of data to identify independently evolving lineages that can be treated as species. We here test species limits in the avian Lesser Short-toed Lark Alaudala rufesens-Sand Lark A. raytal complex, which has an intricate taxonomic history, ranging from a single to three recognised species, with different inclusiveness in different treatments. Our integrative taxonomic approach is based on a combination of DNA sequences, plumage, biometrics, songs, song-flights, geographical distributions, habitat, and bioclimatic data, and using various methods including a species delimitation program (STACEY) based on the multispecies coalescent model. We propose that four species should be recognised: Lesser Short-toed Lark A. rufescens (sensu stricto), Heine's Short-toed Lark A. heinei, Asian Short-toed Lark A. cheleensis and Sand Lark A. raytal. There is also some evidence suggesting lineage separation within A. cheleensis and A. raytal, but additional data are required to evaluate this. The species delimitation based on STACEY agrees well with the non-genetic data. Although computer-based species delimitation programs can be useful in identifying independently evolving lineages, we stress that whenever possible, species hypotheses proposed by these programs should be tested by independent, non-genetic data. Our results highlight the difficulty and subjectivity of delimiting lineages and species, especially at early stages in the speciation process.


Subject(s)
Passeriformes/classification , Phylogeny , Animals , Bayes Theorem , Choice Behavior , Climate , Cytochromes b/genetics , Discriminant Analysis , Ecosystem , Feathers/anatomy & histology , Flight, Animal/physiology , Geography , Humidity , Passeriformes/anatomy & histology , Passeriformes/physiology , Rain , Species Specificity , Temperature , Vocalization, Animal/physiology
16.
Mol Phylogenet Evol ; 146: 106757, 2020 05.
Article in English | MEDLINE | ID: mdl-32028027

ABSTRACT

We present a revised taxonomy of Estrildidae based on the first time-calibrated phylogeny of the family Estrildidae estimated from a data set including the majority of the species, and all genera except the monospecific Paludipasser, using two mitochondrial and five nuclear markers. We find that most differences in current taxonomy reflect alternative opinions among authors regarding inclusiveness of genera, which are usually not in conflict with the phylogeny. The most notable exception is the current circumscriptions of the genera Neochmia, Nesocharis and Taeniopygia, which are incompatible with the phylogeny. Estrildidae is subdivided into six well supported subclades, which we propose be recognized as the subfamilies Amandavinae, Erythrurinae, Estrildinae, Lagonostictinae, Lonchurinae and Poephilinae.


Subject(s)
Passeriformes/classification , Animals , Cell Nucleus/genetics , Mitochondria/genetics , Passeriformes/genetics , Phylogeny
17.
Proc Biol Sci ; 287(1919): 20192400, 2020 01 29.
Article in English | MEDLINE | ID: mdl-31964299

ABSTRACT

To elucidate the relationships and spatial range evolution across the world of the bird genus Turdus (Aves), we produced a large genomic dataset comprising ca 2 million nucleotides for ca 100 samples representing 53 species, including over 2000 loci. We estimated time-calibrated maximum-likelihood and multispecies coalescent phylogenies and carried out biogeographic analyses. Our results indicate that there have been considerably fewer trans-oceanic dispersals within the genus Turdus than previously suggested, such that the Palaearctic clade did not originate in America and the African clade was not involved in the colonization of the Americas. Instead, our findings suggest that dispersal from the Western Palaearctic via the Antilles to the Neotropics might have occurred in a single event, giving rise to the rich Neotropical diversity of Turdus observed today, with no reverse dispersals to the Palaearctic or Africa. Our large multilocus dataset, combined with dense species-level sampling and analysed under probabilistic methods, brings important insights into historical biogeography and systematics, even in a scenario of fast and spatially complex diversification.


Subject(s)
Biological Evolution , Phylogeography , Songbirds/physiology , Animals , Phylogeny
18.
PeerJ ; 7: e6727, 2019.
Article in English | MEDLINE | ID: mdl-31106048

ABSTRACT

Massively parallel DNA sequencing opens up opportunities for bridging multiple temporal and spatial dimensions in biodiversity research, thanks to its efficiency to recover millions of nucleotide polymorphisms. Here, we identify the current status, discuss the main challenges, and look into future perspectives on biodiversity genomics focusing on insects, which arguably constitute the most diverse and ecologically important group among all animals. We suggest 10 simple rules that provide a succinct step-by-step guide and best-practices to anyone interested in biodiversity research through the study of insect genomics. To this end, we review relevant literature on biodiversity and evolutionary research in the field of entomology. Our compilation is targeted at researchers and students who may not yet be specialists in entomology or molecular biology. We foresee that the genomic revolution and its application to the study of non-model insect lineages will represent a major leap to our understanding of insect diversity.

19.
Syst Biol ; 68(1): 32-46, 2019 01 01.
Article in English | MEDLINE | ID: mdl-29771371

ABSTRACT

Advances in high-throughput sequencing techniques now allow relatively easy and affordable sequencing of large portions of the genome, even for nonmodel organisms. Many phylogenetic studies reduce costs by focusing their sequencing efforts on a selected set of targeted loci, commonly enriched using sequence capture. The advantage of this approach is that it recovers a consistent set of loci, each with high sequencing depth, which leads to more confidence in the assembly of target sequences. High sequencing depth can also be used to identify phylogenetically informative allelic variation within sequenced individuals, but allele sequences are infrequently assembled in phylogenetic studies. Instead, many scientists perform their phylogenetic analyses using contig sequences which result from the de novo assembly of sequencing reads into contigs containing only canonical nucleobases, and this may reduce both statistical power and phylogenetic accuracy. Here, we develop an easy-to-use pipeline to recover allele sequences from sequence capture data, and we use simulated and empirical data to demonstrate the utility of integrating these allele sequences to analyses performed under the multispecies coalescent model. Our empirical analyses of ultraconserved element locus data collected from the South American hummingbird genus Topaza demonstrate that phased allele sequences carry sufficient phylogenetic information to infer the genetic structure, lineage divergence, and biogeographic history of a genus that diversified during the last 3 myr. The phylogenetic results support the recognition of two species and suggest a high rate of gene flow across large distances of rainforest habitats but rare admixture across the Amazon River. Our simulations provide evidence that analyzing allele sequences leads to more accurate estimates of tree topology and divergence times than the more common approach of using contig sequences.


Subject(s)
Alleles , Classification/methods , Conserved Sequence/genetics , Phylogeny , Animals , Birds/classification , Birds/genetics , Computer Simulation , Ecosystem
20.
Mol Phylogenet Evol ; 129: 149-157, 2018 12.
Article in English | MEDLINE | ID: mdl-30026124

ABSTRACT

Jacamar species occur throughout Amazonia, with most species occupying forested habitats. One species-complex, Galbula leucogastra/chalcothorax, is associated to white sand ecosystems (WSE). Previous studies of WSE bird species recovered shallow genetic structure in mtDNA coupled with signs of gene flow among WSE patches. Here, we characterize diversification of the G. leucogastra/chalcothorax species-complex with dense sampling across its distribution using mitochondrial and genomic (Ultraconserved Elements, UCEs) DNA sequences. We performed concatenated likelihood and Bayesian analysis, as well as a species-tree analysis using ∗BEAST, to establish the phylogenetic relationships among populations. The mtDNA results recovered at least six geographically-structured lineages, with G. chalcothorax embedded within lineages of G. leucogastra. In contrast, both concatenated and species-tree analyses of UCE data recovered G. chalcothorax as sister to all G. leucogastra lineages. We hypothesize that the mitochondrial genome of one of the G. leucogastra lineage (Madeira) was captured into G. chalcothorax in the past. We discuss how WSE evolution and the coevolution of mtDNA and nuclear genes might have played a role in this apparently rare event.


Subject(s)
Biological Evolution , Birds/genetics , DNA, Mitochondrial/genetics , Ecosystem , Animals , Bayes Theorem , Brazil , Cell Nucleus/genetics , Gene Flow , Genetic Loci , Genome, Mitochondrial , Haplotypes/genetics , Mitochondria/genetics , Phylogeny , Phylogeography , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...