Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Molecules ; 29(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38338429

ABSTRACT

Photodynamic inactivation (PDI) is a highly effective treatment that can eliminate harmful microorganisms in a variety of settings. This study explored the efficacy of a curcumin-rich extract, Curcuma L., (Cur)- and essential oil component, trans-cinnamaldehyde, (Ca)-mediated PDI against Listeria monocytogenes ATCC 15313 (Lm) including planktonic cells and established biofilms on silicone rubber (Si), polytetrafluoroethylene (PTFE), stainless steel 316 (SS), and polyethylene terephthalate (PET). Applying Ca- and Cur-mediated PDI resulted in planktonic cell reductions of 2.7 and 6.4 log CFU/cm2, respectively. Flow cytometric measurements (FCMs) coupled with CFDA/PI and TOTO®-1 staining evidenced that Ca- doubled and Cur-mediated PDI quadrupled the cell damage. Moreover, the enzymatic activity of Lm cells was considerably reduced by Cur-mediated PDI, indicating its superior efficacy. Photosensitization also affected Lm biofilms, but their reduction did not exceed 3.7 log CFU/cm2. Cur-mediated PDI effectively impaired cells on PET and PTFE, while Ca-mediated PDI caused no (TOTO®-1) or only slight (PI) cell damage, sparing the activity of cells. In turn, applying Ca-mediate PDI to Si largely diminished the enzymatic activity in Lm. SS contained 20% dead cells, suggesting that SS itself impacts Lm viability. In addition, the efficacy of Ca-mediated PDI was enhanced on the SS, leading to increased damage to the cells. The weakened viability of Lm on Si and SS could be linked to unfavorable interactions with the surfaces, resulting in a better effect of Ca against Lm. In conclusion, Cur demonstrated excellent photosensitizing properties against Lm in both planktonic and biofilm states. The efficacy of Ca was lower than that of Cur. However, Ca bears potent antibiofilm effects, which vary depending on the surface on which Lm resides. Therefore, this study may help identify more effective plant-based compounds to combat L. monocytogenes in an environmentally sustainable manner.


Subject(s)
Acrolein/analogs & derivatives , Listeria monocytogenes , Quinolinium Compounds , Thiazoles , Curcuma , Anti-Bacterial Agents/pharmacology , Biofilms , Polytetrafluoroethylene
2.
Appl Environ Microbiol ; 89(10): e0114723, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37846990

ABSTRACT

Antimicrobial blue light (aBL) in the 400-470 nm wavelength range has been reported to kill multiple bacteria. This study assessed its potential for mitigating an important foodborne pathogen, Listeria monocytogenes (Lm), focusing on surface decontamination. Three wavelengths were tested, with gallic acid as a photosensitizing agent (Ps), against dried cells obtained from bacterial suspensions, and biofilms on stainless-steel (SS) coupons. Following aBL exposure, standard microbiological analysis of inoculated coupons was conducted to measure viability. Statistical analysis of variance was performed. Confocal laser scanning microscopy was used to observe the biofilm structures. Within 16 h of exposure at 405 nm, viable Lm dried cells and biofilms were reduced by approx. 3 log CFU/cm2 with doses of 2,672 J/cm2. Application of Ps resulted in an additional 1 log CFU/cm2 at 668 J/cm2, but its effect was not consistent. The highest dose (960 J/cm2) at 420 nm reduced viable counts on the biofilms by 1.9 log CFU/cm2. At 460 nm, after 800 J/cm2, biofilm counts were reduced by 1.6 log CFU/cm2. The effect of material composition on Lm viability was also investigated. Irradiation at 405 nm (668 J/cm2) of cells dried on polystyrene resulted in one of the largest viability reductions (4.0 log CFU/cm2), followed by high-density polyethylene (3.5 log CFU/cm2). Increasing the dose to 4,008 J/cm2 from 405 nm (24 h), improved its efficacy only on SS and polyvinyl chloride. Biofilm micrographs displayed a decrease in biofilm biomass due to the removal of biofilm portions from the surface and a shift from live to dead cells suggesting damage to biofilm cell membranes. These results suggest that aBL is a potential intervention to treat Lm contamination on typical material surfaces used in food production.IMPORTANCECurrent cleaning and sanitation programs are often not capable of controlling pathogen biofilms on equipment surfaces, which transmit the bacteria to ready-to-eat foods. The presence of native plant microbiota and organic matter can protect pathogenic bacteria by reducing the efficacy of sanitizers as well as promoting biofilm formation. Post-operation washing and sanitizing of produce contact surfaces might not be adequate in eliminating the presence of pathogens and commensal bacteria. The use of a dynamic and harmless light technology during downtime and close of operation could serve as a useful tool in preventing biofilm formation and persistence. Antimicrobial blue light (aBL) technology has been explored for hospital disinfection with very promising results, but its application to control foodborne pathogens remains relatively limited. The use of aBL could be a complementary strategy to inactivate surfaces in restaurant or supermarket deli settings.


Subject(s)
Anti-Infective Agents , Listeria monocytogenes , Colony Count, Microbial , Biofilms , Anti-Infective Agents/pharmacology , Light , Stainless Steel , Food Microbiology
3.
Colloids Surf B Biointerfaces ; 228: 113391, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37290199

ABSTRACT

This work aimed to determine the ability of Listeria innocua (L.i.) to colonize eight materials found in food-processing and packaging settings and to evaluate the viability of the sessile cells. We also selected four commonly used phytochemicals (trans-cinnamaldehyde, eugenol, citronellol, and terpineol) to examine and compare their efficacies against L.i. on each surface. Biofilms were also deciphered in chamber slides using confocal laser scanning microscopy to learn more about how phytochemicals affect L.i. The materials tested were silicone rubber (Si), polyurethane (PU), polypropylene (PP), polytetrafluoroethylene (PTFE), stainless steel 316 L (SS), copper (Cu), polyethylene terephthalate (PET), and borosilicate glass (GL). L.i. colonized Si and SS abundantly, followed by PU, PP, Cu, PET, GL, and PTFE surfaces. The live/dead status ranged from 65/35% for Si to 20/80% for Cu, and the estimates of cells unable to grow on Cu were the highest, reaching even 43%. Cu was also characterized by the highest degree of hydrophobicity (ΔGTOT = -81.5 mJ/m2). Eventually, it was less prone to attachment, as we could not recover L.i. after treatments with control or phytochemical solutions. The PTFE surface demonstrated the least total cell densities and fewer live cells (31%) as compared to Si (65%) or SS (nearly 60%). It also scored high in hydrophobicity degree (ΔGTOT = -68.9 mJ/m2) and efficacy of phytochemical treatments (on average, biofilms were reduced by 2.1 log10 CFU/cm2). Thus, the hydrophobicity of surface materials plays a role in cell viability, biofilm formation, and then biofilm control and could be the prevailing parameter when designing preventive measures and interventions. As for phytochemical comparison, trans-cinnamaldehyde displayed greater efficacies, with the highest reductions seen on PET and Si (4.6 and 4.0 log10 CFU/cm2). The biofilms in chamber slides exposed to trans-cinnamaldehyde revealed the disrupted organization to a greater extent than other molecules. This may help establish better interventions via proper phytochemical selection for incorporation in environment-friendly disinfection approaches.


Subject(s)
Listeria monocytogenes , Biofilms , Phytochemicals/pharmacology , Polytetrafluoroethylene , Stainless Steel/pharmacology , Food Microbiology , Bacterial Adhesion
4.
Microbiol Resour Announc ; 11(2): e0092521, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35112897

ABSTRACT

This report describes the genome sequences of two Lactobacillus johnsonii strains (AER105 and AER25) and three Ligilactobacillus salivarius strains (AER35, AER36, and AER04) recovered from broiler chicken gastrointestinal tracts in the southeastern United States. These genome sequences will enhance our understanding of the ecology of lactobacilli in the chicken gut microbiome.

5.
Front Microbiol ; 12: 638933, 2021.
Article in English | MEDLINE | ID: mdl-34335486

ABSTRACT

In nature, Listeria may interact competitively and cooperatively with other organisms, resulting in unique spatial organization and functions for cells within the community. This study was undertaken to characterize the biofilm architecture of binary biofilms of Listeria monocytogenes and Lactobacillus species and to assess their effect on the survival of Listeria during exposure to hypochlorite. Three L. monocytogenes strains, ATCC 19115 (Lm5), ATCC 19117 (Lm7), and Coleslaw (LmC), were selected and combined individually with three Lactobacillus strains: L. fermentum (Lf), L. bavaricus (Lb), and L. plantarum (Lp). In binary Lm-Lp biofilms, the Lm cell counts were similar to single-species biofilms (8.5 log CFU/well), and the Lp cell numbers declined by 1.0 log CFU/well. In the presence of Lb, the Lm cell counts were reduced by 1.5 log CFU/well (p < 0.05), whereas the Lf cell counts increased at least by 3.5 log CFU/well. Confocal laser scanning microscopy (CLSM) determined that interspecies interactions significantly affected the spatial organization of three binary biofilms. Biofilm surface-to-volume ratio increased from 0.8 µm2/µm3 for Lm5 in the monoculture to 2.1 µm2/µm3 for Lm5-Lp in the dual-species model (p < 0.05), and was characterized by a thicker structure with a largely increased surface area. Biofilm roughness increased from 0.2 for Lm7 to 1.0 for Lm7-Lb biofilms (p < 0.05), which appeared as interspecific segregation. Biofilm thickness increased from 34.2 µm for LmC to 46.3 µm for LmC-Lf (p < 0.05), which produced flat and compact structures that covered the entire surface available. The biomass of the extracellular matrix was higher in the case of some binary biofilms (p < 0.05); however, this effect was dependent upon the species pair. When treated with hypochlorite, Lm5 in binary biofilms had an approximately 1.5 log CFU/well greater survival than individually. The unique spatial organization and greater protein production may explain the protective effect of Lp after hypochlorite exposure.

6.
Int J Food Microbiol ; 347: 109193, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-33836443

ABSTRACT

Current consumer preferences for both clean label food ingredients and convenience-based foods has provided a unique opportunity to explore the application of novel natural food preservatives in sous vide products. The anaerobic environment and relatively low thermal processing of the sous vide process creates a favorable environment for the survival, germination, and outgrowth of spore-forming bacterium Clostridium perfringens. The aim of this study was to identify effective novel natural ingredient formulations against C. perfringens and apply them within a vacuum-sealed sous vide chicken model exposed to abusive storage and chilling conditions. Among six commercial vinegar-based formulations, liquid vinegar with citrus extract (CE; 1.0%) and with lemon juice concentrate (LJC; 1.5%) were identified as the most effective at inhibiting three individual C. perfringens strains. Both reduced viable cell counts by 5 log CFU/mL (P < 0.05), whereas reductions in spore counts ranged from 2 to 4 log CFU/mL depending on formulation and concentration used. Once incorporated to chicken meat 1.0% CE and 1.5% LJC before sous-vide cooking, completely inhibited the growth of mixed C. perfringens strains (P < 0.05) during storage for 16 days at 12 and 16 °C. Exponential cooling from 54 to 4 °C was performed for 18 h to imitate abusive storage conditions. CE and LJC at 3.0% inhibited growth and reduced counts by 3.4 and 2.9 log CFU/g compared to respective controls. Treatments CE and LJC could be implemented within the formulation of a sous vide chicken product to provide an effective protection against C. perfringens meeting clean label expectations.


Subject(s)
Anti-Infective Agents/pharmacology , Clostridium perfringens/drug effects , Cooking/methods , Food Preservatives/pharmacology , Poultry Products/microbiology , Animals , Anti-Infective Agents/analysis , Chickens , Clostridium perfringens/growth & development , Colony Count, Microbial , Food Handling , Food Microbiology , Food Preservatives/analysis , Microbial Viability/drug effects , Spores, Bacterial/drug effects , Spores, Bacterial/growth & development
7.
Food Res Int ; 134: 109214, 2020 08.
Article in English | MEDLINE | ID: mdl-32517896

ABSTRACT

One of the common ways to prevent food spoilage throughout product's shelf life is by using artificial/synthetic preservatives. However, the growing negative perception of consumers over synthetic preservatives has encouraged the food industry to consider their natural alternatives. Plant extracts, increasingly recognized as consumer-friendly, represent a valuable source of active compounds, mostly polyphenols, with potent antimicrobial and antibiofilm activities. Hence, this article focuses mainly on the antimicrobial activity of plant-based polyphenol-rich extracts as well as on their potential use and limitations in the food industry. Some new trends such as antimicrobial food packaging combined with plant extracts and photodynamic inactivation (PDI) combined with a natural photosensitiser, curcumin, are discussed as well.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyphenols/chemistry , Polyphenols/pharmacology , Food Preservation , Food Technology
8.
Molecules ; 25(11)2020 Jun 06.
Article in English | MEDLINE | ID: mdl-32517201

ABSTRACT

Bacterial biofilms contribute to problems with preserving food hygiene, jeopardizing any conventional intervention method used by the food industry. Hence, the approach of using essential oil (EO) compounds effective in biofilm control has considerable merit and deserves in-depth research. In this study, the effect of selected EO compounds (eugenol, trans-cinnamaldehyde, citronellol, and terpineol) was assessed on Escherichia coli biofilm control by plate count, resazurin assay, and Syto® 9/PI (-/propidium iodide) staining coupled with flow cytometry (FCM) and confocal laser scanning microscopy (CLSM). The selected EO compounds effectively inhibited the growth of planktonic E. coli at low concentrations of 3-5 mM, revealing a high antimicrobial activity. EO compounds markedly interfered with biofilms too, with trans-cinnamaldehyde causing the most prominent effects. Its antibiofilm activity was manifested by a high reduction of cell metabolic activity (>60%) and almost complete reduction in biofilm cell culturability. In addition, almost 90% of the total cells had perturbed cell membranes. Trans-cinnamaldehyde further impacted the cell morphology resulting in the filamentation and, thus, in the creation of a mesh network of cells. Citronellol scored the second in terms of the severity of the observed effects. However, most of all, it strongly prevented native microcolony formation. Eugenol and terpineol also affected the formation of a typical biofilm structure; however, small cell aggregates were still repeatedly found. Overall, eugenol caused the mildest impairment of cell membranes where 50% of the total cells showed the Syto® 9+/PI- pattern coupled with healthy cells and another 48% with injured cells (the Syto® 9+/PI+). For terpineol, despite a similar percentage of healthy cells, another 45% was shared between moderately (Syto® 9+PI+) and heavily (Syto® 9-PI+) damaged cells. The results highlight the importance of a multi-method approach for an accurate assessment of EO compounds' action against biofilms and may help develop better strategies for their effective use in the food industry.


Subject(s)
Acrolein/analogs & derivatives , Acyclic Monoterpenes/pharmacology , Anti-Infective Agents/pharmacology , Biofilms/growth & development , Escherichia coli O157/growth & development , Eugenol/pharmacology , Terpenes/pharmacology , Acrolein/pharmacology , Antimutagenic Agents/pharmacology , Biofilms/drug effects , Escherichia coli O157/drug effects
9.
Food Sci Technol Int ; 26(4): 300-310, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31779495

ABSTRACT

The effect of ginger rhizome, in comparison with sodium ascorbate and butylated hydroxytoluene, and storage time at 5℃ on the quality of pasteurized canned meat was studied. Ginger rhizome was as effective as sodium ascorbate in inhibiting lipid oxidation. The canned meat with ginger rhizome was characterized by a lighter color and a lower contribution of redness than the remaining products. It was also characterized by the lowest hardness, springiness, and chewiness. In a sensory evaluation, meat with ginger rhizome was evaluated as juicier and softer than the remaining meat products. The results of this study indicate that ginger rhizome could be used in the place of synthetic antioxidants in pasteurized canned meat.


Subject(s)
Antioxidants , Food Handling/methods , Food Preservation/methods , Meat Products/analysis , Red Meat/analysis , Refrigeration , Zingiber officinale , Animals , Color , Food Storage/methods , Hardness , Humans , Lipid Peroxidation , Pasteurization , Rhizome , Swine
10.
Microbiol Res ; 192: 239-246, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27664742

ABSTRACT

pH stress is recognized as an important feature for Lactobacillus in relation to lifestyle and commercial utility. Hence, this study aims to investigate the cell function of Lactobacilli cells subjected to pHs between 7.0 and 2.0. For this purpose, the Lactobacilli isolates of vegetable origin were first hybridized with fluorescent oligonucleotide rRNA probes for detecting Lactobacillus species. Then, cells were exposed to pH stress and labelled with fluorescent probes, carboxyfluorescein diacetate (CFDA) and propidium iodine (PI), which provided the insight into esterase activity and membrane integrity of cells. Among isolates, fluorescence in situ hybridization (FISH) enabled us to specifically detect L. plantarum and L. brevis. Interestingly, FCM analysis revealed that at pHs between 7.0 and 4.0 the cell membrane was intact, while after the exposure at pH 3.0, and 2.0 became perturbed or impaired. Finally, L. brevis and L. plantarum differed from each other in fluorescence labeling behaviour and culturability. However, the results showed that the same standard protocol for labeling enables discrimination of subpopulations of tested species. Depending on the species, the substantial culturability loss was observed at pH 3.0 and 2.0. These results suggest that the taxonomic and physiological fluorescent probes could be suitable for in situ detection of specific bacteria and rapid assessment of the physiological status of cells.


Subject(s)
Bacterial Physiological Phenomena , Hydrogen-Ion Concentration , Lactobacillus/classification , Lactobacillus/physiology , Flow Cytometry , Fluorescent Dyes , In Situ Hybridization, Fluorescence , Microbial Viability , RNA, Ribosomal, 16S/genetics
11.
J Biotechnol ; 200: 19-26, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25747276

ABSTRACT

Changes in pH are significant environmental stresses that may be encountered by lactobacilli during fermentation processes or passage through the gastrointestinal tract. Here, we report the cell response of Lactobacillus spp. isolated from traditionally fermented cabbage subjected to acid/alkaline treatments at pH 2.5, 7.4 and 8.1, which represented pH conditions of the gastrointestinal tract. Among six isolates, four species of Lactobacillus plantarum and two of Lactobacillus brevis were identified by fluorescence in situ hybridization (FISH). The fluorescence-based strategy of combining carboxyfluorescein diacetate (CFDA) and propidium iodine (PI) into a dual-staining assay was used together with epifluorescence microscopy (EFM) and flow cytometry (FCM) for viability assessment. The results showed that the cells maintained esterase activity and membrane integrity at pH 8.1 and 7.4. There was also no loss of culturability as shown by plate counts. In contrast, the majority of 2.5 pH-treated cells had a low extent of esterase activity, and experienced membrane perturbation. For these samples, an extensive loss of culturability was demonstrated. Comparison of the results of an in situ assessment with that of the conventional culturing method has revealed that although part of the stressed population was unable to grow on the growth media, it was deemed viable using a CFDA/PI assay. However, there was no significant change in the cell morphology among pH-treated lactobacilli populations. These analyses are expected to be useful in understanding the cell response of Lactobacillus strains to pH stress and may facilitate future investigation into functional and industrial aspects of this response.


Subject(s)
Brassica/microbiology , Lactobacillus , Bacterial Load , Esterases/metabolism , Fermentation , Flow Cytometry , Fluoresceins/metabolism , Hydrochloric Acid/pharmacology , Hydrogen-Ion Concentration , In Situ Hybridization, Fluorescence , Lactobacillus/cytology , Lactobacillus/genetics , Lactobacillus/metabolism , Microscopy, Fluorescence , Oligonucleotide Probes , Propidium/metabolism , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sodium Hydroxide/pharmacology
12.
Acta Biochim Pol ; 60(4): 531-7, 2013.
Article in English | MEDLINE | ID: mdl-24432309

ABSTRACT

The capability of bacteria to colonize food processing surfaces and to form biofilm has become an emerging concern for food industry. The presence and persistence of biofilm on food processing surfaces may pose a risk of food spoilage or food poisoning. A better understanding of bacterial adhesion and resistance of biofilms is needed to ensure quality and safety of food products. This review focuses on microscopic approaches incorporated to explore biofilm mode of existence in food processing environments. An application of antimicrobial agents for the biofilm control, in particular for bacteria connected with food processing environments, is also highlighted. In addition, some aspects of biofilm resistance, especially the phenomenon of persister cells, are discussed.


Subject(s)
Biofilms/drug effects , Food Analysis , Food Microbiology , Microscopy/methods , Bacteria/drug effects , Bacteria/growth & development , Biofilms/growth & development , Humans , In Situ Hybridization, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...