Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 9(1): 610, 2022 10 08.
Article in English | MEDLINE | ID: mdl-36209289

ABSTRACT

Viruses are genetically and structurally diverse, and outnumber cells by orders of magnitude. They can cause acute and chronic infections, suppress, or exacerbate immunity, or dysregulate survival and growth of cells. To identify chemical agents with pro- or antiviral effects we conducted arrayed high-content image-based multi-cycle infection screens of 1,280 mainly FDA-approved compounds with three human viruses, rhinovirus (RV), influenza A virus (IAV), and herpes simplex virus (HSV) differing in genome organization, composition, presence of an envelope, and tropism. Based on Z'-factors assessing screening quality and Z-scores ranking individual compounds, we identified potent inhibitors and enhancers of infection: the RNA mutagen 5-Azacytidine against RV-A16; the broad-spectrum antimycotic drug Clotrimazole inhibiting IAV-WSN; the chemotherapeutic agent Raltitrexed blocking HSV-1; and Clobetasol enhancing HSV-1. Remarkably, the topical antiseptic compound Aminacrine, which is clinically used against bacterial and fungal agents, inhibited all three viruses. Our data underscore the versatility and potency of image-based, full cycle virus propagation assays in cell-based screenings for antiviral agents.


Subject(s)
Anti-Infective Agents, Local , Herpes Simplex , Influenza A virus , Aminacrine/therapeutic use , Anti-Infective Agents, Local/therapeutic use , Antiviral Agents/pharmacology , Azacitidine/therapeutic use , Clobetasol/therapeutic use , Clotrimazole/therapeutic use , Herpes Simplex/drug therapy , Humans , Mutagens/therapeutic use , Rhinovirus
2.
Curr Res Virol Sci ; 3: 100019, 2022.
Article in English | MEDLINE | ID: mdl-35072124

ABSTRACT

Endemic human coronaviruses (hCoVs) 229E and OC43 cause respiratory disease with recurrent infections, while severe acute respiratory syndrome (SARS)-CoV-2 spreads across the world with impact on health and societies. Here, we report an image-based multicycle infection procedure with α-coronavirus hCoV-229E-eGFP in an arrayed chemical library screen of 5440 clinical and preclinical compounds. Toxicity counter selection and challenge with the ß-coronaviruses OC43 and SARS-CoV-2 in tissue culture and human airway epithelial explant cultures (HAEEC) identified four FDA-approved compounds with oral availability. Methylene blue (MB, used for the treatment of methemoglobinemia), Mycophenolic acid (MPA, used in organ transplantation) and the anti-fungal agent Posaconazole (POS) had the broadest anti-CoV spectrum. They inhibited the shedding of SARS-CoV-2 and variants-of-concern (alpha, beta, gamma, delta) from HAEEC in either pre- or post exposure regimens at clinically relevant concentrations. Co-treatment of cultured cells with MB and the FDA-approved SARS-CoV-2 RNA-polymerase inhibitor Remdesivir reduced the effective anti-viral concentrations of MB by 2-fold, and Remdesivir by 4 to 10-fold, indicated by BLISS independence synergy modelling. Neither MB, nor MPA, nor POS affected the cell delivery of SARS-CoV-2 or OC43 (+)sense RNA, but blocked subsequent viral RNA accumulation in cells. Unlike Remdesivir, MB, MPA or POS did not reduce the release of viral RNA in post exposure regimen, thus indicating infection inhibition at a post-replicating step as well. In summary, the data emphasize the power of unbiased, full cycle compound screens to identify and repurpose broadly acting drugs against coronaviruses.

3.
Neural Netw ; 140: 247-260, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33831786

ABSTRACT

We introduce a novel adaptive version of the Neighborhood Retrieval Visualizer (NeRV). We maintain the advantages of the conventional NeRV method, while proposing an improvement of the data samples' neighborhood width calculation, in the input and output data space. In the standard NeRV, the data samples' neighborhood widths are determined in an arbitrary manner, in this way, inhibiting the possible quality of the resulting data visualization. We propose to compute the widths adaptively, on the basis of the input data scattering. Therefore, we first perform the preliminary input data clustering, next, we calculate the values of the inner-cluster variances, which convey the information on the input data scattering, then, we assign them to each data sample, and finally, we use them as the basis for the data samples' neighborhood widths determination. The results of the experiments conducted on the three different real datasets confirm the effectiveness and usefulness of the proposed approach.


Subject(s)
Computer Graphics , Machine Learning , Cluster Analysis
4.
Article in English | MEDLINE | ID: mdl-32582561

ABSTRACT

Background: Cervical cancer (CC) is associated to high-risk human papillomavirus (HPV) infections, for this reason it is crucial to have sensitive and accurate HPV diagnostic tests. To date, most research is focused on HPVs within the Alphapapillomavirus (α-PVs) genus and little attention has been paid to cervical infections with other HPV genotypes, like those of the Betapapillomavirus (ß-PVs) and Gammapapillomavirus (γ-PVs) genera. The aim of this study was to determine the HPV genotypes from different genera in women with CC using Next-Generation Sequencing (NGS). Methods: The study comprised 48 HPV positive CC samples evaluated with the Linear Array HPV Genotyping test and individually sequenced by 454 NGS using PGMY09/11 and FAP primers. To determine the HPV genotypes present in each sample, the obtained sequences were compared with all HPV L1 gene reference sequences from the Papillomavirus Episteme database (PaVE). Moreover, 50 HPV positive low-grade cervical lesion samples individually genotyped with NGS were also included to determine the genotypes present preferentially in CC patients. Results: Among the 48 CC samples, 68.75% consisted of multiple HPV infections, 51 different genotypes were detected, of which 7 are still unclassified, 28 belong to α-PVs (6, 11, 16, 18, 26, 30, 33, 35, 39, 42, 43, 44, 45, 51, 52, 53, 54, 59, 62, 66, 68, 69, 70, 71, 74, 81, 102, 114), 10 to ß-PVs (5, 12, 21, 37, 38b, 47, 80, 107, 118, 122), and 6 to γ-PVs (101, 103, 123, 135, 147, 214). Among them, HPV16 was the most prevalent genotype (54.2%), followed by HPV18 (16.7%), HPV38b (14.6%), and HPVs 52/62/80 (8.3%). Some genotypes were exclusively found in CC when compared with Cervical Intraepithelial Neoplasia grade 1 (CIN1) samples, such as HPVs 5, 18, 38b, 107, 122, FA39, FA116, mSK_120, and mSK_136. Conclusions: This work demonstrates the great diversity of HPV genotypes detected by combining PGMY and FAP primers with NGS in cervical swabs. The relatively high attribution of ß- and γ- PVs in CC samples suggest their possible role as carcinogenic cofactors, but deeper studies need to be performed to determine if they have transforming properties and the significance of HPV-coinfections.


Subject(s)
Alphapapillomavirus , Papillomavirus Infections , Uterine Cervical Neoplasms , DNA, Viral/genetics , Female , Genotype , Humans , Mexico , Papillomaviridae/genetics
5.
Nat Commun ; 11(1): 1338, 2020 03 12.
Article in English | MEDLINE | ID: mdl-32165633

ABSTRACT

Macrophages have important protective functions during infection with herpes simplex virus type 1 (HSV-1). However, molecular mechanisms that restrict viral propagation and protect from severe disease are unclear. Here we show that macrophages take up HSV-1 via endocytosis and transport the virions into multivesicular bodies (MVBs). In MVBs, acid ceramidase (aCDase) converts ceramide into sphingosine and increases the formation of sphingosine-rich intraluminal vesicles (ILVs). Once HSV-1 particles reach MVBs, sphingosine-rich ILVs bind to HSV-1 particles, which restricts fusion with the limiting endosomal membrane and prevents cellular infection. Lack of aCDase in macrophage cultures or in Asah1-/- mice results in replication of HSV-1 and Asah1-/- mice die soon after systemic or intravaginal inoculation. The treatment of macrophages with sphingosine enhancing compounds blocks HSV-1 propagation, suggesting a therapeutic potential of this pathway. In conclusion, aCDase loads ILVs with sphingosine, which prevents HSV-1 capsids from penetrating into the cytosol.


Subject(s)
Acid Ceramidase/metabolism , Herpes Simplex/enzymology , Herpes Simplex/prevention & control , Herpesvirus 1, Human/physiology , Macrophages/enzymology , Multivesicular Bodies/virology , Acid Ceramidase/genetics , Animals , Female , Herpes Simplex/virology , Humans , Macrophages/virology , Mice , Mice, Inbred C57BL , Mice, Knockout , Virus Replication
6.
Diagn Pathol ; 14(1): 31, 2019 Apr 22.
Article in English | MEDLINE | ID: mdl-31010421

ABSTRACT

BACKGROUND: Linear Array Genotyping Test (LA) is one of the gold standards used for Human Papillomavirus (HPV) genotyping, however, since its launching in 2006, new HPV genotypes are still being characterized with the use of high specificity techniques such as Next-Generation Sequencing (NGS). Derived from a previous study of the IMSS Research Network on HPV, which suggested that there might be cross-reaction of some HPV genotypes in the LA test, the aim of this study was to elucidate this point. METHODS: Double stranded L1 fragments (gBlocks) from different HPVs were used to perform LA test, additionally, 14 HPV83+ and 26 HPV84+ cervical samples determined with LA, were individually genotyped by NGS. RESULTS: From the LA HPV83+ samples, 64.3% were truly HPV83+, while 42.9% were found to be HPV102+. On the other hand, 69.2% of the LA HPV84+ samples were HPV84+, while 3.8, 11.5 and 30.8% of the samples were indeed HPV 86, 87 and 114 positive, respectively. Additionally, novel nucleotide changes in L1 gene from HPV genotypes 83, 84, 87, 102 and 114 were determined in Mexican cervical samples, some of them lead to changes in the protein sequence. CONCLUSIONS: We demonstrated that there is cross-hybridization between alpha3-HPV genotypes 86, 87 and 114 with HPV84 probe in LA strips and between HPV102 with HPV83 probe; this may be causing over or under estimation in the prevalence of these genotypes. In the upcoming years, a switch to more specific and sensitive genotyping methods that detect a broader spectrum of HPV genotypes needs to be implemented.


Subject(s)
High-Throughput Nucleotide Sequencing , Papillomaviridae/isolation & purification , Papillomavirus Infections/diagnosis , Cervix Uteri/pathology , Cervix Uteri/virology , Female , Genotype , Genotyping Techniques , Humans , Papillomaviridae/genetics , Papillomavirus Infections/pathology , Papillomavirus Infections/virology , Sensitivity and Specificity , Sequence Analysis, DNA
7.
Infect Agent Cancer ; 12: 15, 2017.
Article in English | MEDLINE | ID: mdl-28270859

ABSTRACT

BACKGROUND: Human papillomavirus (HPV) is the main etiological agent of cervical cancer, the third most common cancer among women globally and the second most frequent in Mexico. Persistent infection with high-risk HPV genotypes is associated with premalignant lesions and cervical cancer development. HPVs considered as low risk or not yet classified, are often found in coinfection with different HPV genotypes. Indeed, HPV62 is one of the most prevalent HPV detected in some countries, but there is limited information about its prevalence in other regions and there are no HPV62 variants currently described. The aim of this study was to determine the prevalence of HPV62 in cervical samples from Mexican women and to identify mutations in the L1, E6 and E7 genes, which have never been reported in our population. METHODS: HPV screening was performed by Cobas HPV Test in women who attended prevention health programs and dysplasia clinics. All HPV positive samples (n = 491) and 87 additional cervical cancer samples were then genotyped with Linear Array HPV Genotyping test. Some samples were selected to corroborate genotyping by Next-Generation sequencing. On the other hand, nucleotide changes in L1, E6 and E7 genes were determined using PCR, Sanger sequencing and analysis with the CLC-MainWorkbench 7.6.1 software. L1 protein structure was predicted with the I-TASSER server. RESULTS: Using Linear Array, HPV62 prevalence was 7.6% in general population, 8% in Cervical Intraepithelial Neoplasia grade 1 (CIN1) samples and 4.6% in cervical samples. The presence of HPV62 was confirmed with Next-Generation sequencing. Regarding L1 gene, novel sequence variations were detected, but they did not alter the tertiary structure of the protein. Moreover, several nucleotide substitutions were found in E6 and E7 genes compared to reference HPV62 genomic sequence. Specifically, three non-synonymous sequence variations were detected, two in E6 and one in E7. CONCLUSIONS: HPV62 is a frequent HPV genotype found mainly in general population and in women with CIN1, and in 90.5% of the cases it was found in coinfection with other HPVs. Novel nucleotide changes in its L1, E6 and E7 genes were detected, some of them lead to changes in the protein sequence.

SELECTION OF CITATIONS
SEARCH DETAIL
...