Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Genet Eng Biotechnol ; 21(1): 113, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37947895

ABSTRACT

BACKGROUND: Asthma is a chronic and complex pulmonary condition that affects the airways. A total of 250,000 asthma-related deaths are recorded annually and several proteins including chymase, spleen tyrosine kinase, and prostaglandin D2 receptor have been implicated in the pathophysiology of asthma. Different anti-inflammatory drugs have been developed for the treatment of asthma, particularly corticosteroids, but the associated adverse reactions cannot be overlooked. It is therefore of interest to identify and develop small molecule inhibitors of the integral proteins associated with asthma that have very little or no side effects. Herein, a molecular modeling approach was employed to screen the bioactive compounds in Chromolaena odorata and identify compounds with high binding affinity to the protein targets. RESULTS: Five compounds were identified after rigorous and precise molecular screening namely (-)-epicatechin, chlorogenic acid, ombuine, quercetagetin, and quercetin 3-O-rutinoside. These compounds generally showed impressive binding to all the targets understudy. However, chlorogenic acid, quercetagetin, and quercetin 3-O-rutinoside showed better prospects in terms of triple-action inhibition. Further pulmonary and oral pharmacokinetics showed positive results for all the reported compounds. The generated pharmacophore model showed hydrogen bond donor, hydrogen bond acceptor, and aromatic rings as basic structural features required for triple action inhibition. CONCLUSION: These findings suggest that these compounds could be explored as triple-action inhibitors of the protein targets. They are, therefore, recommended for further analysis.

2.
Mol Divers ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37884781

ABSTRACT

Cisplatin is a cancer medication widely used today, but it still poses some problems due to its toxic properties in the body. To overcome this issue, a new complex has been developed as a potential anticancer drug prospect by minimizing its toxic consequences. A novel Zn(II)IleDTC complex containing isoleucine dithiocarbamate ligands has been produced and analyzed using a range of analytical and spectroscopic methods. The Zn(II) IleDTC complex were characterized using various methods, including UV-Vis spectroscopy, FT-IR, determination of melting point, conductivity, and HOMO-LUMO analysis. Furthermore, computational NMR spectrum analysis was conducted in this study. Molecular docking studies was conducted to evaluate the potential of Zn(II) isoleucine dithiocarbamate as an HIF1 inhibitor. The results showed that the Zn complex exhibited a good docking score of -6.6 and formed hydrogen bonds with ARG 17, VAL264, and GLU15, alkyl bonds with TRP27 and LEU32, and Pi-Alkyl bonds with PRO41 and ARG44. This suggests that the Zn(II) isoleucine dithiocarbamate complex could be a promising candidate for cancer treatment with potential HIF1 inhibition properties. To assess the dynamic stability and efficacy of protein-ligand interactions over time, molecular dynamics simulations was conducted for both individual proteins and protein complexes. The cytotoxicity evaluation of Zn(II) isoleucine dithiocarbamate against MCF-7 cells obtained an IC50 value of 362.70 µg/mL indicating moderate cytotoxicity and morphological changes of cancer cells causing cancer cells to undergo apoptosis. The Zn(II) isoleucine dithiocarbamate complex may have promising potential as an anticancer compound due to its significant inhibitory effect on the breast cancer cell line (MCF7). According to the ADMET study, the complex exhibits drug-like characteristics with low toxicity, further supporting its potential as a viable drug candidate.

3.
J Mol Model ; 29(5): 159, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37099048

ABSTRACT

The most dangerous subtype of breast cancer, triple-negative breast cancer (TNBC), accounts for 25% of all breast cancer-related deaths and 15% of all breast cancer cases. TNBC is distinguished by the lack of immunohistochemical expression of HER2, progesterone receptors, or oestrogen receptors. Although it has been reported that upregulation of EGFR and VEGFR-2 is associated with TNBC progression, no proven effective targeted therapy exists at this time. We used structural bioinformatics methods, including density functional theory, molecular docking, molecular dynamic simulation, pharmacokinetic and drug-likeness models, to identify promising EGFR/VEGFR-2 inhibitors from N-(4-methoxyphenyl)-2-[4-(3-oxo-3-phenylprop-1-en-1-yl) phenoxy] acetamide and six of its modified derivatives in light of the lack of effective targets inhibitor Version 14 of Spartan software was used to analyse density functional theory. The Schrodinger software suite 2018's Maestro interface was used for the molecular docking analysis, and the admetSAR and swissADME servers were used for drug-likeness and absorption, distribution, metabolism, excretion, and toxicity. All of the compounds showed strong electronic characteristics. Additionally, all of the tested compounds met the ADMET and drug-likeness requirements without a single instance of Lipinski's rule of five violations. Additionally, the molecules' levels of affinity for the target proteins varied. The highest binding affinities were demonstrated by the MOLb-VEGFR-2 complex (- 9.925 kcal/mol) and the MOLg-EGFR complex (- 5.032 kcal/mol). The interaction of the molecules in the domain of the EGFR and VEGFR-2 receptors was also better understood through molecular dynamic simulation of the complex.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Molecular Docking Simulation , Vascular Endothelial Growth Factor Receptor-2 , ErbB Receptors , Acetamides/pharmacology , Acetamides/chemistry , Acetamides/therapeutic use
4.
Bull Natl Res Cent ; 46(1): 102, 2022.
Article in English | MEDLINE | ID: mdl-35431537

ABSTRACT

Background: The search for ideal drugs with absolute antiviral activity against SARS-CoV-2 is still in place, and attention has been recently drawn to natural products. Several molecular targets have been identified as points of therapeutic intervention. The targets used in this study include SARS-CoV-2 helicase, spike protein, RNA-dependent RNA polymerase, main protease, and human ACE-2. An integrative computer-aided approach, which includes molecular docking, pharmacophore modeling, and pharmacokinetic profiling, was employed to identify anthocyanins with robust multiple antiviral activities against these SARS-CoV-2 targets. Result: Four anthocyanins (Delphinidin 3-O-glucosyl-glucoside, Cyanidin 3-O-glucosyl-rutinoside, Cyanidin 3-(p-coumaroyl)-diglucoside-5-glucoside), and Nasunin) with robust multiple inhibitory interactions were identified from a library of 118 anthocyanins using computer-aided techniques. These compounds exhibited very good binding affinity to the protein targets and moderate pharmacokinetic profiles. However, Cyanidin 3-O-glucosyl-rutinoside is reported to be the most suitable drug candidate with multiple antiviral effects against SARS-CoV-2 due to its good binding affinity to all five protein targets engaged in the study. Conclusions: The anthocyanins reported in this study exhibit robust binding affinities and strong inhibitory molecular interactions with the target proteins and could be well exploited as potential drug candidates with potent multiple antiviral effects against COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...