Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
PLoS One ; 19(3): e0297159, 2024.
Article in English | MEDLINE | ID: mdl-38466696

ABSTRACT

INTRODUCTION: In 2012, the World Health Organization revised treatment guidelines for childhood pneumonia with lower chest wall indrawing (LCWI) but no 'danger signs', to recommend home-based treatment. We analysed data from children hospitalized with LCWI pneumonia in the Pneumonia Etiology Research for Child Health (PERCH) study to identify sub-groups with high odds of mortality, who might continue to benefit from hospital management but may not be admitted by staff implementing the 2012 guidelines. We compare the proportion of deaths identified using the criteria in the 2012 guidelines, and the proportion of deaths identified using an alternative set of criteria from our model. METHODS: PERCH enrolled a cohort of 2189 HIV-negative children aged 2-59 months who were admitted to hospital with LCWI pneumonia (without obvious cyanosis, inability to feed, vomiting, convulsions, lethargy or head nodding) between 2011-2014 in Kenya, Zambia, South Africa, Mali, The Gambia, Bangladesh, and Thailand. We analysed risk factors for mortality among these cases using predictive logistic regression. Malnutrition was defined as mid-upper-arm circumference <125mm or weight-for-age z-score <-2. RESULTS: Among 2189 cases, 76 (3·6%) died. Mortality was associated with oxygen saturation <92% (aOR 3·33, 1·99-5·99), HIV negative but exposed status (4·59, 1·81-11·7), moderate or severe malnutrition (6·85, 3·22-14·6) and younger age (infants compared to children 12-59 months old, OR 2·03, 95%CI 1·05-3·93). At least one of three risk factors: hypoxaemia, HIV exposure, or malnutrition identified 807 children in this population, 40% of LCWI pneumonia cases and identified 86% of the children who died in hospital (65/76). Risk factors identified using the 2012 WHO treatment guidelines identified 66% of the children who died in hospital (n = 50/76). CONCLUSIONS: Although it focuses on treatment failure in hospital, this study supports the proposal for better risk stratification of children with LCWI pneumonia. Those who have hypoxaemia, any malnutrition or those who were born to HIV positive mothers, experience poorer outcomes than other children with LCWI pneumonia. Consistent identification of these risk factors should be prioritised and children with at least one of these risk factors should not be managed in the community.


Subject(s)
HIV Infections , Malnutrition , Pneumonia , Infant , Child , Humans , Child, Preschool , Pneumonia/epidemiology , Hospitalization , Malnutrition/complications , HIV Infections/complications , Hypoxia/etiology
2.
Lancet Infect Dis ; 21(9): 1293-1302, 2021 09.
Article in English | MEDLINE | ID: mdl-34280357

ABSTRACT

BACKGROUND: The Gambia introduced seven-valent pneumococcal conjugate vaccine (PCV7) in August 2009, followed by PCV13 in May, 2011, using a schedule of three primary doses without a booster dose or catch-up immunisation. We aimed to assess the long-term impact of PCV on disease incidence. METHODS: We did 10 years of population-based surveillance for invasive pneumococcal disease (IPD) and WHO defined radiological pneumonia with consolidation in rural Gambia. The surveillance population included all Basse Health and Demographic Surveillance System residents aged 2 months or older. Nurses screened all outpatients and inpatients at all health facilities using standardised criteria for referral. Clinicians then applied criteria for patient investigation. We defined IPD as a compatible illness with isolation of Streptococcus pneumoniae from a normally sterile site (cerebrospinal fluid, blood, or pleural fluid). We compared disease incidence between baseline (May 12, 2008-May 11, 2010) and post-vaccine years (2016-2017), in children aged 2 months to 14 years, adjusting for changes in case ascertainment over time. FINDINGS: We identified 22 728 patients for investigation and detected 342 cases of IPD and 2623 cases of radiological pneumonia. Among children aged 2-59 months, IPD incidence declined from 184 cases per 100 000 person-years to 38 cases per 100 000 person-years, an 80% reduction (95% CI 69-87). Non-pneumococcal bacteraemia incidence did not change significantly over time (incidence rate ratio 0·88; 95% CI, 0·64-1·21). We detected zero cases of vaccine-type IPD in the 2-11 month age group in 2016-17. Incidence of radiological pneumonia decreased by 33% (95% CI 24-40), from 10·5 to 7·0 per 1000 person-years in the 2-59 month age group, while pneumonia hospitalisations declined by 27% (95% CI 22-31). In the 5-14 year age group, IPD incidence declined by 69% (95% CI -28 to 91) and radiological pneumonia by 27% (95% CI -5 to 49). INTERPRETATION: Routine introduction of PCV13 substantially reduced the incidence of childhood IPD and pneumonia in rural Gambia, including elimination of vaccine-type IPD in infants. Other low-income countries can expect substantial impact from the introduction of PCV13 using a schedule of three primary doses. FUNDING: Gavi, The Vaccine Alliance; Bill & Melinda Gates Foundation; UK Medical Research Council; Pfizer Ltd.


Subject(s)
Pneumococcal Infections/psychology , Pneumococcal Vaccines/immunology , Pneumonia/prevention & control , Streptococcus pneumoniae/immunology , Vaccination , Vaccines, Conjugate/immunology , Adolescent , Child , Child, Preschool , Female , Gambia , Humans , Immunization , Incidence , Infant , Male , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/administration & dosage , Population Surveillance
3.
Clin Infect Dis ; 70(6): 1050-1057, 2020 03 03.
Article in English | MEDLINE | ID: mdl-31111870

ABSTRACT

BACKGROUND: In 2015, pneumonia remained the leading cause of mortality in children aged 1-59 months. METHODS: Data from 1802 human immunodeficiency virus (HIV)-negative children aged 1-59 months enrolled in the Pneumonia Etiology Research for Child Health (PERCH) study with severe or very severe pneumonia during 2011-2014 were used to build a parsimonious multivariable model predicting mortality using backwards stepwise logistic regression. The PERCH severity score, derived from model coefficients, was validated on a second, temporally discrete dataset of a further 1819 cases and compared to other available scores using the C statistic. RESULTS: Predictors of mortality, across 7 low- and middle-income countries, were age <1 year, female sex, ≥3 days of illness prior to presentation to hospital, low weight for height, unresponsiveness, deep breathing, hypoxemia, grunting, and the absence of cough. The model discriminated well between those who died and those who survived (C statistic = 0.84), but the predictive capacity of the PERCH 5-stratum score derived from the coefficients was moderate (C statistic = 0.76). The performance of the Respiratory Index of Severity in Children score was similar (C statistic = 0.76). The number of World Health Organization (WHO) danger signs demonstrated the highest discrimination (C statistic = 0.82; 1.5% died if no danger signs, 10% if 1 danger sign, and 33% if ≥2 danger signs). CONCLUSIONS: The PERCH severity score could be used to interpret geographic variations in pneumonia mortality and etiology. The number of WHO danger signs on presentation to hospital could be the most useful of the currently available tools to aid clinical management of pneumonia.


Subject(s)
Developing Countries , Pneumonia , Child , Child, Preschool , Female , HIV , Hospitals , Humans , Infant , Pneumonia/epidemiology , Severity of Illness Index
4.
Lancet Infect Dis ; 17(9): 965-973, 2017 09.
Article in English | MEDLINE | ID: mdl-28601421

ABSTRACT

BACKGROUND: Pneumococcal conjugate vaccines (PCVs) are used in many low-income countries but their impact on the incidence of pneumonia is unclear. The Gambia introduced PCV7 in August, 2009, and PCV13 in May, 2011. We aimed to measure the impact of the introduction of these vaccines on pneumonia incidence. METHODS: We did population-based surveillance and case-control studies. The primary endpoint was WHO-defined radiological pneumonia with pulmonary consolidation. Population-based surveillance was for suspected pneumonia in children aged 2-59 months (minimum age 3 months in the case-control study) between May 12, 2008, and Dec 31, 2015. Surveillance for the impact study was limited to the Basse Health and Demographic Surveillance System (BHDSS), whereas surveillance for the case-control study included both the BHDSS and Fuladu West Health and Demographic Surveillance System. Nurses screened all outpatients and inpatients at all health facilities in the surveillance area using standardised criteria for referral to clinicians in Basse and Bansang. These clinicians recorded clinical findings and applied standardised criteria to identify patients with suspected pneumonia. We compared the incidence of pneumonia during the baseline period (May 12, 2008, to May 11, 2010) and the PCV13 period (Jan 1, 2014, to Dec 31, 2015). We also investigated the effectiveness of PCV13 using case-control methods between Sept 12, 2011, and Sept 31, 2014. Controls were aged 90 days or older, and were eligible to have received at least one dose of PCV13; cases had the same eligibility criteria with the addition of having WHO-defined radiological pneumonia. FINDINGS: We investigated 18 833 children with clinical pneumonia and identified 2156 cases of radiological pneumonia. Among children aged 2-11 months, the incidence of radiological pneumonia fell from 21·0 cases per 1000 person-years in the baseline period to 16·2 cases per 1000 person-years (23% decline, 95% CI 7-36) in 2014-15. In the 12-23 month age group, radiological pneumonia decreased from 15·3 to 10·9 cases per 1000 person-years (29% decline, 12-42). In children aged 2-4 years, incidence fell from 5·2 to 4·1 cases per 1000 person-years (22% decline, 1-39). Incidence of all clinical pneumonia increased by 4% (-1 to 8), but hospitalised cases declined by 8% (3-13). Pneumococcal pneumonia declined from 2·9 to 1·2 cases per 1000 person-years (58% decline, 22-77) in children aged 2-11 months and from 2·6 to 0·7 cases per 1000 person-years (75% decline, 47-88) in children aged 12-23 months. Hypoxic pneumonia fell from 13·1 to 5·7 cases per 1000 person-years (57% decline, 42-67) in children aged 2-11 months and from 6·8 to 1·9 cases per 1000 person-years (72% decline, 58-82) in children aged 12-23 months. In the case-control study, the best estimate of the effectiveness of three doses of PCV13 against radiological pneumonia was an adjusted odds ratio of 0·57 (0·30-1·08) in children aged 3-11 months and vaccine effectiveness increased with greater numbers of doses (p=0·026). The analysis in children aged 12 months and older was underpowered because there were few unvaccinated cases and controls. INTERPRETATION: The introduction of PCV in The Gambia was associated with a moderate impact on the incidence of radiological pneumonia, a small reduction in cases of hospitalised pneumonia, and substantial reductions of pneumococcal and hypoxic pneumonia in young children. Low-income countries that introduce PCV13 with reasonable coverage can expect modest reductions in hospitalised cases of pneumonia and a marked impact on the incidence of severe childhood pneumonia. FUNDING: GAVI's Pneumococcal vaccines Accelerated Development and Introduction Plan, Bill & Melinda Gates Foundation, and UK Medical Research Council.


Subject(s)
Heptavalent Pneumococcal Conjugate Vaccine/administration & dosage , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/administration & dosage , Pneumonia, Pneumococcal/prevention & control , Population Surveillance , Vaccination/methods , Gambia , Hospitalization , Humans , Incidence , Infant , Pneumococcal Infections/immunology , Radiology , Streptococcus pneumoniae/immunology , Vaccines, Conjugate/immunology
5.
Clin Infect Dis ; 64(suppl_3): S328-S336, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28575367

ABSTRACT

BACKGROUND.: There is limited information on the association between colonization density of upper respiratory tract colonizers and pathogen-specific pneumonia. We assessed this association for Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus, and Pneumocystis jirovecii. METHODS.: In 7 low- and middle-income countries, nasopharyngeal/oropharyngeal swabs from children with severe pneumonia and age-frequency matched community controls were tested using quantitative polymerase chain reaction (PCR). Differences in median colonization density were evaluated using the Wilcoxon rank-sum test. Density cutoffs were determined using receiver operating characteristic curves. Cases with a pathogen identified from lung aspirate culture or PCR, pleural fluid culture or PCR, blood culture, and immunofluorescence for P. jirovecii defined microbiologically confirmed cases for the given pathogens. RESULTS.: Higher densities of H. influenzae were observed in both microbiologically confirmed cases and chest radiograph (CXR)-positive cases compared to controls. Staphylococcus aureus and P. jirovecii had higher densities in CXR-positive cases vs controls. A 5.9 log10 copies/mL density cutoff for H. influenzae yielded 86% sensitivity and 77% specificity for detecting microbiologically confirmed cases; however, densities overlapped between cases and controls and positive predictive values were poor (<3%). Informative density cutoffs were not found for S. aureus and M. catarrhalis, and a lack of confirmed case data limited the cutoff identification for P. jirovecii. CONCLUSIONS.: There is evidence for an association between H. influenzae colonization density and H. influenzae-confirmed pneumonia in children; the association may be particularly informative in epidemiologic studies. Colonization densities of M. catarrhalis, S. aureus, and P. jirovecii are unlikely to be of diagnostic value in clinical settings.


Subject(s)
Haemophilus influenzae/growth & development , Moraxella catarrhalis/growth & development , Pneumocystis carinii/growth & development , Pneumonia, Bacterial/diagnosis , Pneumonia, Pneumocystis/diagnosis , Respiratory Tract Infections/microbiology , Staphylococcus aureus/growth & development , Child, Preschool , Female , Haemophilus Infections/diagnosis , Haemophilus Infections/microbiology , Haemophilus influenzae/genetics , Haemophilus influenzae/isolation & purification , Humans , Infant , Male , Moraxella catarrhalis/genetics , Moraxella catarrhalis/isolation & purification , Moraxellaceae Infections/diagnosis , Moraxellaceae Infections/microbiology , Nasopharynx/microbiology , Oropharynx/microbiology , Pneumocystis carinii/genetics , Pneumocystis carinii/isolation & purification , Pneumonia, Bacterial/diagnostic imaging , Pneumonia, Bacterial/etiology , Pneumonia, Bacterial/microbiology , Pneumonia, Pneumocystis/microbiology , Pneumonia, Staphylococcal/diagnosis , Pneumonia, Staphylococcal/microbiology , Polymerase Chain Reaction , ROC Curve , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification
6.
Clin Infect Dis ; 63(suppl 4): S187-S196, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27838672

ABSTRACT

BACKGROUND: Few data exist describing pertussis epidemiology among infants and children in low- and middle-income countries to guide preventive strategies. METHODS: Children 1-59 months of age hospitalized with World Health Organization-defined severe or very severe pneumonia in 7 African and Asian countries and similarly aged community controls were enrolled in the Pneumonia Etiology Research for Child Health study. They underwent a standardized clinical evaluation and provided nasopharyngeal and oropharyngeal swabs and induced sputum (cases only) for Bordetella pertussis polymerase chain reaction. Risk factors and pertussis-associated clinical findings were identified. RESULTS: Bordetella pertussis was detected in 53 of 4200 (1.3%) cases and 11 of 5196 (0.2%) controls. In the age stratum 1-5 months, 40 (2.3% of 1721) cases were positive, all from African sites, as were 8 (0.5% of 1617) controls. Pertussis-positive African cases 1-5 months old, compared to controls, were more often human immunodeficiency virus (HIV) uninfected-exposed (adjusted odds ratio [aOR], 2.2), unvaccinated (aOR, 3.7), underweight (aOR, 6.3), and too young to be immunized (aOR, 16.1) (all P ≤ .05). Compared with pertussis-negative African cases in this age group, pertussis-positive cases were younger, more likely to vomit (aOR, 2.6), to cough ≥14 days (aOR, 6.3), to have leukocyte counts >20 000 cells/µL (aOR, 4.6), and to have lymphocyte counts >10 000 cells/µL (aOR, 7.2) (all P ≤ .05). The case fatality ratio of pertussis-infected pneumonia cases 1-5 months of age was 12.5% (95% confidence interval, 4.2%-26.8%; 5/40); pertussis was identified in 3.7% of 137 in-hospital deaths among African cases in this age group. CONCLUSIONS: In the postneonatal period, pertussis causes a small fraction of hospitalized pneumonia cases and deaths; however, case fatality is substantial. The propensity to infect unvaccinated infants and those at risk for insufficient immunity (too young to be vaccinated, premature, HIV-infected/exposed) suggests that the role for maternal vaccination should be considered along with efforts to reduce exposure to risk factors and to optimize childhood pertussis vaccination coverage.


Subject(s)
Pneumonia/epidemiology , Pneumonia/etiology , Whooping Cough/complications , Whooping Cough/epidemiology , Bordetella pertussis/genetics , Case-Control Studies , Coinfection , Developing Countries , Female , HIV Infections , Hospitalization , Humans , Infant , Infant, Newborn , Male , Mortality , Odds Ratio , Pneumonia/diagnosis , Population Surveillance , Risk Factors , Symptom Assessment , Vaccination , Whooping Cough/prevention & control
7.
Lancet Infect Dis ; 16(6): 703-711, 2016 06.
Article in English | MEDLINE | ID: mdl-26897105

ABSTRACT

BACKGROUND: Little information is available about the effect of pneumococcal conjugate vaccines (PCVs) in low-income countries. We measured the effect of these vaccines on invasive pneumococcal disease in The Gambia where the 7-valent vaccine (PCV7) was introduced in August, 2009, followed by the 13-valent vaccine (PCV13) in May, 2011. METHODS: We conducted population-based surveillance for invasive pneumococcal disease in individuals aged 2 months and older who were residents of the Basse Health and Demographic Surveillance System (BHDSS) in the Upper River Region, The Gambia, using standardised criteria to identify and investigate patients. Surveillance was done between May, 2008, and December, 2014. We compared the incidence of invasive pneumococcal disease between baseline (May 12, 2008-May 11, 2010) and after the introduction of PCV13 (Jan 1, 2013-Dec 31, 2014), adjusting for changes in case ascertainment over time. FINDINGS: We investigated 14 650 patients, in whom we identified 320 cases of invasive pneumococcal disease. Compared with baseline, after the introduction of the PCV programme, the incidence of invasive pneumococcal disease decreased by 55% (95% CI 30-71) in the 2-23 months age group, from 253 to 113 per 100 000 population. This decrease was due to an 82% (95% CI 64-91) reduction in serotypes covered by the PCV13 vaccine. In the 2-4 years age group, the incidence of invasive pneumococcal disease decreased by 56% (95% CI 25-75), from 113 to 49 cases per 100 000, with a 68% (95% CI 39-83) reduction in PCV13 serotypes. The incidence of non-PCV13 serotypes in children aged 2-59 months increased by 47% (-21 to 275) from 28 to 41 per 100 000, with a broad range of serotypes. The incidence of non-pneumococcal bacteraemia varied little over time. INTERPRETATION: The Gambian PCV programme reduced the incidence of invasive pneumococcal disease in children aged 2-59 months by around 55%. Further surveillance is needed to ascertain the maximum effect of the vaccine in the 2-4 years and older age groups, and to monitor serotype replacement. Low-income and middle-income countries that introduce PCV13 can expect substantial reductions in invasive pneumococcal disease. FUNDING: GAVI's Pneumococcal vaccines Accelerated Development and Introduction Plan (PneumoADIP), Bill & Melinda Gates Foundation, and the UK Medical Research Council.


Subject(s)
Heptavalent Pneumococcal Conjugate Vaccine/administration & dosage , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/administration & dosage , Population Surveillance , Vaccination/methods , Vaccines, Conjugate/immunology , Child, Preschool , Female , Gambia , Humans , Immunologic Factors , Infant , Male , Pneumococcal Infections/immunology , Streptococcus pneumoniae/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...