Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 11(25): 5630-5649, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37159053

ABSTRACT

Our regard to the use of chitin as a material has drastically changed since its discovery, 210 years ago. From an intractable material because of its insolubility in common solvents, it became one of the most important raw materials serving as a source of chitosan (its main derivative), and more recently, as source of nanometric forms: nanocrystals and nanofibers. Nanoscale chitin forms are remarkable high-value compounds for nanomaterials' development, due to their intrinsic biological and mechanical properties, as well as their potential as eco-friendly components to valorize the plentiful by-products of the seafood industry. Lately, these nanochitin forms have been widely used as nanofillers in polymer nanocomposites, and in particular, in natural biologically-active matrices for the development of biomaterials. The recent progresses achieved in the last two decades concerning the use of nanoscale chitin in biologically-active matrices for tissue engineering is highlighted in this review. First, an overview on the use of nanochitin in the different biomedical fields is presented and discussed. Then, the state-of-the-art regarding the development of biomaterials based on chitin nanocrystals or nanofibers is described in the context of the role of nanochitin in biologically-active matrices namely polysaccharides (chitin, chitosan, cellulose, hyaluronic acid, alginate), proteins (silk, collagen, gelatin) and others (lignin). Finally, major conclusions and perspectives on the use of nanochitin as an increasingly important raw material are described.


Subject(s)
Chitosan , Nanocomposites , Chitosan/chemistry , Tissue Engineering , Chitin/chemistry , Biocompatible Materials/chemistry
2.
Macromol Biosci ; 22(9): e2200124, 2022 09.
Article in English | MEDLINE | ID: mdl-35766012

ABSTRACT

Hernia injuries are the main condition where mesh implants are needed to provide a suitable reinforcement of the damaged tissue. Mesh implants made of polypropylene (PP) are widely used for this application, however complications related to lack of flexibility, elasticity, and mesh infection have been reported. The development of mesh implants from safer materials adaptable to patient necessities can suppose an alternative for conventional PP meshes. In this work, personalized mesh implants made of alginate and waterborne-polyurethane (A-WBPU) are developed using 3D printing technology. For that purpose, five waterborne polyurethane ink formulations with different amounts of alginate are developed and rheologically characterized. All ink formulations are 3D printed showing good printability, manufacturing surgical mesh implants with suitable morphological characteristics customizable to patient injury through computer-aided design (CAD) mesh model adaptation. A calcium chloride (CaCl2 ) coating is applied after 3D printing as mesh reinforcement. Mechanical analysis revealed that CaCl2 coated meshes containing 6 wt % of alginate in their formulation are the most suitable to be used as implants for small and groin hernias under physiological tensile strength value of 16 N cm-1 , and presenting proper elasticity to cover physiological corporal movements (42.57 %). Moreover, an antibiotic-loaded A-WBPU formulation suitable for 3D printing of meshes are developed as strategy to avoid possible mesh infection.


Subject(s)
Herniorrhaphy , Polyurethanes , Alginates , Calcium Chloride , Humans , Polypropylenes , Printing, Three-Dimensional , Surgical Mesh
3.
Polymers (Basel) ; 14(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35406293

ABSTRACT

Nowadays, biopolymers are playing a fundamental role in our society because of the environmental issues and concerns associated with synthetic polymers. The aim of this Special Issue entitled 'Women in Polymer Science and Technology: Biopolymers' is highlighting the work designed and developed by women on biopolymer science and technology. In this context, this short review aims to provide an introduction to this Special Issue by highlighting some recent contributions of women around the world on the particular topic of biopolymer science and technology during the last 20 years. In the first place, it highlights a selection of important works performed on a number of well-studied natural polymers, namely, agar, chitin, chitosan, cellulose, and collagen. Secondly, it gives an insight into the discovery of new polysaccharides and enzymes that have a role in their synthesis and in their degradation. These contributions will be paving the way for the next generation of female and male scientists on this topic.

4.
Polymers (Basel) ; 13(5)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803415

ABSTRACT

3D printing has exponentially grown in popularity due to the personalization of each printed part it offers, making it extremely beneficial for the very demanding biomedical industry. This technique has been extensively developed and optimized and the advances that now reside in the development of new materials suitable for 3D printing, which may open the door to new applications. Fused deposition modeling (FDM) is the most commonly used 3D printing technique. However, filaments suitable for FDM must meet certain criteria for a successful printing process and thus the optimization of their properties in often necessary. The aim of this work was to prepare a flexible and printable polyurethane filament parting from a biocompatible waterborne polyurethane, which shows potential for biomedical applications. In order to improve filament properties and printability, cellulose nanofibers and graphene were employed to prepare polyurethane based nanocomposites. Prepared nanocomposite filaments showed altered properties which directly impacted their printability. Graphene containing nanocomposites presented sound enough thermal and mechanical properties for a good printing process. Moreover, these filaments were employed in FDM to obtained 3D printed parts, which showed good shape fidelity. Properties exhibited by polyurethane and graphene filaments show potential to be used in biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...