Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 87(1): 100206, 2024 01.
Article in English | MEDLINE | ID: mdl-38142826

ABSTRACT

Biological soil amendments of animal origin, such as aqueous dairy manure, may be contaminated with microbial pathogens that can subsequently result in contaminated soil, water runoff, and crops. Multiple mitigation strategies are being evaluated to reduce these risks. Inclusion of filamentous fungus in a biofiltration system to inactivate pathogenic bacteria in aqueous dairy manure prior to land application is explored in this study as a preharvest preventative method. Of the microbes used to remediate biologically contaminated sites, ligninolytic white-rot fungi have been previously studied for their ability to degrade a wide variety of toxic or persistent environmental contaminants. Reduction of two E. coli strains (E. coli TVS355 and E. coli O157:H7 4407) was evaluated in aqueous dairy manure and PBS and in the presence of white-rot fungi Pleurotus ostreatus on three different nutrient sources (woodchips (WC), spent mushroom compost (SMC), and reticulated polyurethane foam (RPF)). Overall, E. coli TVS355 was more persistent in aqueous dairy manure and PBS, surviving for 50 days in the presence of P. ostreatus, with a final concentration of 4 log CFU/g in aqueous manure and 7 log CFU/g in PBS. However, greater (p < 0.0001) reduction of E. coli O157:H7 was observed, surviving for 50 days at an average of 4 log CFU/g in aqueous dairy manure and an average of 3 log CFU/g in PBS. Therefore, P. ostreatus has the potential to result in bacterial decay, with potential reduction observed in E. coli O157:H7. The RPF matrix showed positive results as a potential model for a nutrient limiting resource for P. ostreatus and could be the key to increased bacterial reductions if resulting in ligninolytic activity in order to seek other nutrient sources.


Subject(s)
Escherichia coli O157 , Manure , Cattle , Animals , Manure/microbiology , Soil , Soil Microbiology , Colony Count, Microbial
2.
Sci Total Environ ; 830: 154619, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35306079

ABSTRACT

Wastewater surveillance has been a useful tool complementing clinical testing during the COVID-19 pandemic. However, transitioning surveillance approaches to small populations, such as dormitories and assisted living facilities poses challenges including difficulties with sample collection and processing. Recently, the need for reliable and timely data has coincided with the need for precise local forecasting of the trajectory of COVID-19. This study compared wastewater and clinical data from the University of Delaware (Fall 2020 and Spring 2021 semesters), and evaluated wastewater collection practices for enhanced virus detection sensitivity. Fecal shedding of SARS-CoV-2 is known to occur in infected individuals. However, shedding concentrations and duration has been shown to vary. Therefore, three shedding periods (14, 21, and 30 days) were presumed and included for analysis of wastewater data. SARS-CoV-2 levels detected in wastewater correlated with clinical virus detection when a positive clinical test result was preceded by fecal shedding of 21 days (p< 0.05) and 30 days (p < 0.05), but not with new cases (p = 0.09) or 14 days of shedding (p = 0.17). Discretely collected wastewater samples were compared with 24-hour composite samples collected at the same site. The discrete samples (n = 99) were composited examining the influence of sampling duration and time of day on SARS-CoV-2 detection. SARS-CoV-2 detection varied among dormitory complexes and sampling durations of 3-hour, 12-hour, and 24-hour (controls). Collection times frequently showing high detection values were between the hours of 03:00 to 05:00 and 23:00 to 08:00. In each of these times of day 33% of samples (3/9) were significantly higher (p < 0.05) than the control sample. The remainder (6/9) of the collection times (3-hour and 12-hour) were not different (p > 0.05) from the control. This study provides additional framework for continued methodology development for microbiological wastewater surveillance as the COVID-19 pandemic progresses and in preparation for future epidemiological efforts.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Pandemics , Students , Universities , Wastewater , Wastewater-Based Epidemiological Monitoring
3.
Methods Protoc ; 4(2)2021 May 12.
Article in English | MEDLINE | ID: mdl-34065842

ABSTRACT

The COVID-19 pandemic is a global crisis and continues to impact communities as the disease spreads. Clinical testing alone provides a snapshot of infected individuals but is costly and difficult to perform logistically across whole populations. The virus which causes COVID-19, SARS-CoV-2, is shed in human feces and urine and can be detected in human waste. SARS-CoV-2 can be shed in high concentrations (>107 genomic copies/mL) due to its ability to replicate in the gastrointestinal tract of humans through attachment to the angiotensin-converting enzyme 2 (ACE-2) receptors there. Monitoring wastewater for SARS-CoV-2, alongside clinical testing, can more accurately represent the spread of disease within a community. This protocol describes a reliable and efficacious method to recover SARS-CoV-2 in wastewater, quantify genomic RNA levels, and evaluate concentration fluctuations over time. Using this protocol, viral levels as low as 10 genomic copies/mL were successfully detected from 30 mL of wastewater in more than seven-hundred samples collected between August 2020 and March 2021. Through the adaptation of traditional enteric virus methods used in food safety research, targets have been reliably detected with no inhibition of detection (RT-qPCR) observed in any sample processed. This protocol is currently used for surveillance of wastewater systems across New Castle County, Delaware.

SELECTION OF CITATIONS
SEARCH DETAIL
...