Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Saudi Pharm J ; 32(6): 102073, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38681737

ABSTRACT

The current study explored the protective potential of kaempferol 3-sophoroside-7-glucoside (KSG) against acute lung injury (ALI). Pre-treatment with KSG effectively secured mice from ALI and showed similar efficaciousness to dexamethasone. KSG markedly increased the survival rate and alleviated lung pathological lesions induced by lipopolysaccharide (LPS). Furthermore, KSG attenuated differential and total cell counts in BALF (bronchoalveolar lavage fluid) and MPO (myeloperoxidase) activity. KSG counteracted the NF-κB (nuclear factor-κB) activation and significantly ameliorated the downstream inflammatory cytokine, TNF-α (tumor necrosis factor-α). Simultaneously, KSG suppressed the over-expression of NLRP3 (NOD-like receptor protein 3), caspase-1, and pro-inflammatory cytokine interleukin IL-1ß (interleukine-1ß) and prohibited the elevation of the pyroptotic parameter GSDMD-N (N-terminal domain of gasdermin D) induced by LPS challenge. In addition, KSG significantly enhanced Nrf2 (nuclear-factor erythroid-2-related factor) and HO-1 (heme-oxygenase-1) expression. Meanwhile, KSG mitigated lipid peroxidative markers (malondialdehyde, protein carbonyl and 4-hydroxynonenal) and boosted endogenous antioxidants (superoxide dismutase/reduced glutathione/catalase) in lung tissue. In silico analyses revealed that KSG disrupts Keap1-Nrf2 protein-protein interactions by binding to the KEAP1 domain, consequently activating Nrf2. Specifically, molecular docking demonstrated superior binding affinity of KSG to KEAP1 compared to the reference inhibitor, with docking scores of -9.576 and -6.633 Kcal/mol, respectively. Additionally, the MM-GBSA binding free energy of KSG (-67.25 Kcal/mol) surpassed that of the reference inhibitor (-56.36 Kcal/mol). Furthermore, MD simulation analysis revealed that the KSG-KEAP1 complex exhibits substantial and stable binding interactions with various amino acids over a duration of 100 ns. These findings showed the protective anti-inflammatory and anti-oxidative modulatory efficiencies of KSG that effectively counteracted LPS-induced ALI and encouraged future research and clinical applications of KSG as a protective strategy for ALI.

2.
Int Immunopharmacol ; 130: 111732, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38402834

ABSTRACT

Fulminant hepatic failure (FHF) is the terminal phase of acute liver injury, which is characterized by massive hepatocyte necrosis and rapid hepatic dysfunction in patients without preexisting liver disease. There are currently no therapeutic options for such a life-threatening hepatic failure except liver transplantation; therefore, the terminal phase of the underlying acute liver injury should be avoided. Tomatidine (TOM), asteroidal alkaloid, may have different biological activities, including antioxidant and anti-inflammatory effects. Herein, the lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced FHF mouse model was established to explore the protective potential of TOM and the underlying mechanisms of action. TOM pretreatment significantly inhibited hepatocyte necrosis and decreased serum aminotransferase activities in LPS/D-GalN-stimulated mice. TOM further increased the level of different antioxidant enzymes while reducing lipid peroxidation biomarkers in the liver. These beneficial effects of TOM were shown to be associated with targeting of NF-κB signaling pathways, where TOM repressed NF-κB activation and decreased LPS/D-GalN-induced TNF-α, IL-6, IL-1ß, and iNOS production. Moreover, TOM prevented LPS/D-GalN-induced upregulation of Keap1 expression and downregulation of Nrf2 and HO-1 expression, leading to increased Nrf2-binding activity and HO-1 levels. Besides, TOM pretreatment repressed LPS/D-GalN-induced upregulation of proliferating cell nuclear antigen (PCNA) expression, which spared the hepatocytes from damage and subsequent repair following the LPS/D-GalN challenge. Collectively, our findings revealed that TOM has a protective effect on LPS/D-GalN-induced FHF in mice, showing powerful antioxidant and anti-inflammatory effects, primarily mediated via modulating Keap1/Nrf2/HO-1 and NF-κB/TNF-α/IL-6/IL-1ß/iNOS signaling pathways.


Subject(s)
Liver Failure, Acute , NF-kappa B , Tomatine/analogs & derivatives , Humans , Mice , Animals , NF-kappa B/metabolism , Antioxidants/pharmacology , Liver Failure, Acute/chemically induced , Liver Failure, Acute/drug therapy , Liver Failure, Acute/metabolism , NF-E2-Related Factor 2/metabolism , Lipopolysaccharides/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Signal Transduction , Liver , Oxidative Stress , Inflammation/drug therapy , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , Necrosis/metabolism , Galactosamine/pharmacology
3.
J Diabetes Res ; 2023: 7559078, 2023.
Article in English | MEDLINE | ID: mdl-37223639

ABSTRACT

Diabetes mellitus (DM) is one of the most common diseases worldwide. DM may disrupt hormone regulation. Metabolic hormones, leptin, ghrelin, glucagon, and glucagon-like peptide 1, are produced by the salivary glands and taste cells. These salivary hormones are expressed at different levels in diabetic patients compared to control group and may cause differences in the perception of sweetness. This study is aimed at assessing the concentrations of salivary hormones leptin, ghrelin, glucagon, and GLP-1 and their correlations with sweet taste perception (including thresholds and preferences) in patients with DM. A total of 155 participants were divided into three groups: controlled DM, uncontrolled DM, and control groups. Saliva samples were collected to determine salivary hormone concentrations by ELISA kits. Varying sucrose concentrations (0.015, 0.03, 0.06, 0.12, 0.25, 0.5, and 1 mol/l) were used to assess sweetness thresholds and preferences. Results showed a significant increase in salivary leptin concentrations in the controlled DM and uncontrolled DM compared to the control group. In contrast, salivary ghrelin and GLP-1 concentrations were significantly lower in the uncontrolled DM group than in the control group. In general, HbA1c was positively correlated with salivary leptin concentrations and negatively correlated with salivary ghrelin concentrations. Additionally, in both the controlled and uncontrolled DM groups, salivary leptin was negatively correlated with the perception of sweetness. Salivary glucagon concentrations were negatively correlated with sweet taste preferences in both controlled and uncontrolled DM. In conclusion, the salivary hormones leptin, ghrelin, and GLP-1 are produced either higher or lower in patients with diabetes compared to the control group. In addition, salivary leptin and glucagon are inversely associated with sweet taste preference in diabetic patients.


Subject(s)
Diabetes Mellitus , Glucagon , Humans , Glucagon-Like Peptide 1 , Taste , Ghrelin , Taste Perception , Leptin , Transcription Factors
4.
J Immunotoxicol ; 19(1): 81-92, 2022 12.
Article in English | MEDLINE | ID: mdl-36067115

ABSTRACT

Cadmium (Cd) is an immunotoxic metal frequently found in the environment. The in vitro study undertaken here evaluated the immunotoxic effects of Cd in isolated human peripheral blood monocytes (hPBM). The results of the studies of exposures to varying doses of Cd (0, 0.1, 1, 10, and 100 µM, as cadmium dichloride [CdCl2]) for 3, 6, 12, 24, 48, and 72 hr showed the test agent was cytotoxic to the cells in time- and concentration-related manners. Thereafter, using only those doses found to not cause extreme cell lethality a 48-hr period, the impact of 0.1 or 1 µM CdCl2 on the cells was evaluated. Functionally, CdCl2 treatment led to time- and concentration-related decreases in hPBM phagocytic activities as well as in the ability of the cells to form/release cytokines (including tumor necrosis factor [TNF]-α and interleukin [IL]-6 and -8). The CdCl2 also led to significantly decreased ATP production (in part, via inhibition of mitochondrial complexes I and III) as well as in mitochondrial membrane potentials (MMP) and oxygen consumption rates (OCR; associated with parallel increases in cell lactate production) in the cells. In addition, CdCl2 treatment resulted in significant increases in mitochondrial membrane fluidity (MMF) and cell unsaturated fatty acid content. Based on the results here, one might conclude that some of the effects that arose during the CdCl2-induced dysfunction of the isolated hPBM (i.e. changes phagocytic activity, cytokine formation/secretion) could have evolved secondary to CdCl2-induced disruptions of hPBM cell bioenergetics - an effect that itself was a culmination of an overall toxicity from CdCl2 upon the mitochondria within these cells.


Subject(s)
Cadmium , Monocytes , Cadmium/metabolism , Cadmium/toxicity , Cadmium Chloride/metabolism , Cadmium Chloride/toxicity , Humans , Mitochondria , Tumor Necrosis Factor-alpha/metabolism
5.
Pharmaceutics ; 14(6)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35745852

ABSTRACT

Icariin (ICA), a main active compound of the Epimedium genus, is used as an aphrodisiac in traditional Chinese herbal medicine. Despite its therapeutic efficacy, ICA displays reduced oral absorption, and therefore, low bioavailability hindered its clinical application. Implementing nanotechnology in the field of formulation has been a focus to improve the efficacy of ICA. In this regard, polymeric nanoparticles find a potential application as drug delivery systems. A nanosphere formula was designed, aiming to improve the drug's efficacy. The proposed ICA nanosphere formula (tocozeinolate) was optimized using D-optimal response surface design. The concentrations of ICA (X1), D-α-tocopherol polyethylene glycol 1000 succinate (TPGS, X2), zein (X3), and sodium deoxycholate (SDC, X4) expressed as percentages were investigated as quantitative independent variables. As per the experimental design, 23 formulations were developed, which were investigated for particle size (PS, nm), zeta potential (ZP, mV), and entrapment efficiency (EE, %) as response parameters. Numerical optimization and desirability approach were employed to predict the optimized variable levels that, upon combination, could result in minimized size and maximized zeta potential and ICA entrapment. The optimized ICA-tocozeinolate nanospheres showed a particle size of 224.45 nm, zeta potential of 0.961 mV, and drug entrapment of 65.29% that coincide well with the predicted values. The optimized ICA-tocozeinolate nanospheres were evaluated for sexual behavior in Wistar male rats compared to raw ICA at equivalent doses (20 mg/kg). In vivo assessment results showed significant sexual behavior enhancement by the optimized formulation, as evidenced by decreased average time of both mount latency (ML) and ejaculation latency (EL) to almost half those of raw ICA. Additionally, intromission latency (IL) time was reduced by 41% compared to the raw ICA. These results highlighted the potential of the proposed ICA-tocozeinolate nanospheres as a promising platform for improving the delivery and efficacy of therapeutic agents.

6.
Front Behav Neurosci ; 16: 1068736, 2022.
Article in English | MEDLINE | ID: mdl-36688131

ABSTRACT

Stimulation of remyelination is critical for the treatment of multiple sclerosis (MS) to alleviate symptoms and protect the myelin sheath from further damage. The current study aimed to investigate the possible therapeutic effects of combining vitamin D3 (Vit D3) and siponimod (Sipo) on enhancing remyelination and modulating microglia phenotypes in the cuprizone (CPZ) demyelination mouse model. The study was divided into two stages; demyelination (first 5 weeks) and remyelination (last 4 weeks). In the first 5 weeks, 85 mice were randomly divided into two groups, control (n = 20, standard rodent chow) and CPZ (n = 65, 0.3% CPZ mixed with chow for 6 weeks, followed by 3 weeks of standard rodent chow). At week 5, the CPZ group was re-divided into four groups (n = 14) for remyelination stages; untreated CPZ (0.2 ml of CMC orally), CPZ+Vit D3 (800 IU/kg Vit D3 orally), CPZ+Sipo (1.5 mg/kg Sipo orally), and CPZ+Vit D3 (800 IU/kg Vit D3) + Sipo (1.5 mg/kg Sipo orally). Various behavioral tasks were performed to evaluate motor performance. Luxol Fast Blue (LFB) staining, the expression level of myelin basic protein (MBP), and M1/M2 microglia phenotype genes were assessed in the corpus callosum (CC). The results showed that the combination of Vit D3 and Sipo improved behavioral deficits, significantly promoted remyelination, and modulated expression levels of microglia phenotype genes in the CC at early and late remyelination stages. These results demonstrate for the first time that a combination of Vit D3 and Sipo can improve the remyelination process in the cuprizone (CPZ) mouse model by attenuating the M1 microglia phenotype. This may help to improve the treatment of MS patients.

7.
Pharmaceutics ; 13(12)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34959424

ABSTRACT

Lung cancer is a dangerous type of cancer in men and the third leading cause of cancer-related death in women, behind breast and colorectal cancers. Thymoquinone (THQ), a main compound in black seed essential oils, has a variety of beneficial effects, including antiproliferative, anti-inflammatory, and antioxidant properties. On the other hand, scorpion venom peptides (SV) induce apoptosis in the cancer cells, making it a promising anticancer agent. THQ, SV, and Phospholipon® 90H (PL) were incorporated in a nano-based delivery platform to assess THQ's cellular uptake and antiproliferative efficacy against a lung cancer cell line derived from human alveolar epithelial cells (A549). Several nanovesicles were prepared and optimized using factorial experimental design. The optimized phytosome formulation contained 79.0 mg of PL and 170.0 mg of SV, with vesicle size and zeta potential of 209.9 nm and 21.1 mV, respectively. The IC50 values revealed that A549 cells were significantly more sensitive to the THQ formula than the plain formula and THQ. Cell cycle analysis revealed that THQ formula treatment resulted in significant cell cycle arrest at the S phase, increasing cell population in this phase by 22.1%. Furthermore, the THQ formula greatly increased cell apoptosis (25.17%) when compared to the untreated control (1.76%), plain formula (11.96%), or THQ alone (13.18%). The results also indicated that treatment with THQ formula significantly increased caspase-3, Bax, Bcl-2, and p53 mRNA expression compared to plain formula and THQ. In terms of the inflammatory markers, THQ formula significantly reduced the activity of TNF-α and NF-κB in comparison with the plain formula and THQ only. Overall, the findings from the study proved that a phytosome formulation of THQ could be a promising therapeutic approach for the treatment of lung adenocarcinoma.

8.
Saudi Pharm J ; 29(1): 91-95, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33603543

ABSTRACT

Zamzam water is a natural alkaline water which has become alkaline as a result of the natural environment. It comes from what is considered as one of the oldest springs in the world. The water contains high concentrations of alkaline minerals as well as trace and heavy metals. The aim of the current study is to evaluate the effects of five weeks ingestion of Zamzam water on the liver and kidney functions of rats. Adult female Wistar rats weighing 150-200 g were divided into two groups, with 15 rats in each. The control group was supplied daily by bottled water and the Zamzam water group was supplied daily by 500 ml of Zamzam water for five weeks. The rats were weighed weekly and, at the end of the experiment, blood samples were collected from all rats for the biochemical determination of serum levels of aspartate transaminase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), urea, creatinine, albumin, and uric acid, using calorimetric methods. Liver and kidney tissues were fixed in 10% neutral buffered-formalin solution and further embedded in wax blocks for routine hematoxylin and eosin (H&E) staining and were examined for histopathological changes using a light microscope. The results of the current study showed that there was a significant increase (P < 0.05) in the weight of the Zamzam group when compared to the control group after five weeks of ingestion. Liver and kidney function tests did not show any significant difference when compared with the controls (P > 0.05). In addition, histological examination of the liver and kidney tissues did not show any toxicological changes. In conclusion, the results showed that the ingestion of Zamzam water did not alter serum levels of kidney function tests and liver enzymes; and did not result in a noticeable change in the liver and kidney histology. Thus, the high concentrations of elements in Zamzam water do not induce hepatotoxicity or nephrotoxicity and the water is considered safe for long-term consumption.

9.
Technol Cancer Res Treat ; 19: 1533033820969446, 2020.
Article in English | MEDLINE | ID: mdl-33153413

ABSTRACT

Among all cancer types, colorectal cancer is the third most common in men and the second most common in women globally. Generally, the risk of colorectal cancer increases with age, and colorectal cancer is modulated by various genetic alterations. Alterations in the immune response serve a significant role in the development of colorectal cancer. In primary cancer types, immune cells express a variety of inhibitory molecules that dampen the immune response against tumor cells. Additionally, few reports have demonstrated that classical chemotherapy promotes the immunosuppressive microenvironment in both tissues and immune cells. This study assessed the expression levels of genes using RT-qPCR associated with the immune system, including interferon-γ, programmed death-1, ß2-microglobulin, human leukocyte antigen-A, CD3e, CD28 and intracellular adhesion molecule 1, in patients with colorectal cancer, as these genes are known to serve important roles in immune regulation during cancer incidence. Gene expression analysis was performed with the whole blood cells of patients with colorectal cancer and healthy volunteers. Compared with the normal controls, programmed death-1was highly expressed in patients with advanced-stage colorectal cancer. Furthermore, the expression of programmed death-1 was higher in patients receiving adjuvant therapy, which suggests the therapy dampened the immune response against tumor cells. The results of the present study indicate that classical adjuvant therapies, which are currently used for patients with colorectal cancer, should be modulated, and a combination of classical therapy with anti-programmed death-1 antibody should be conducted for improved management of patients with colorectal cancer.


Subject(s)
Colorectal Neoplasms/genetics , Gene Expression , Neoplastic Cells, Circulating/metabolism , Programmed Cell Death 1 Receptor/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Comorbidity , Female , Humans , Immunomodulation/genetics , Male , Middle Aged , Neoadjuvant Therapy , Neoplasm Staging , Neoplastic Cells, Circulating/pathology , Programmed Cell Death 1 Receptor/metabolism
10.
Oncol Lett ; 20(5): 155, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32934723

ABSTRACT

Multidrug resistance member 1 (MDR1) is located on chromosome 7 and encodes P-glycoprotein, which is universally accepted as a drug resistance biomarker. MDR1 polymorphisms can alter protein expression or function, which has been previously reported to associate with various types of malignancies, such as colorectal cancer (CRC). Therefore, the present study aimed to determine the effects of MDR1 polymorphisms on drug responses of Saudi patients with CRC. DNA samples were obtained from 62 patients with CRC and 100 healthy controls. Genotypes and allele frequencies of MDR1 single nucleotide polymorphisms (SNPs) G2677T and T1236C were determined using the PCR-restriction fragment length polymorphism procedure. The results showed no significant differences in the genotype distribution and allele frequency of T1236C between patients with CRC and controls. However, G2677T was found to serve a highly significant role in protecting against the progression of CRC. In addition, none of the genotypes in SNPs T1236C and G2677T was found to affect chemoresistance to XELIRI and XELOX. In conclusion, although T1236C in the MDR1 gene is not associated with CRC risk, G2677T protects against the development of CRC. Neither of the MDR1 SNPs tested were associated with the risk of chemoresistance. Therefore, these two SNPs cannot be used as molecular markers for predicting drug response in patients with CRC.

11.
Saudi Med J ; 41(8): 834-840, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32789424

ABSTRACT

OBJECTIVES: To measure the blood expression levels of related drug-resistant ATP-binding cassette (ABC) transporters in colorectal cancer (CRC) patients and to assess these examined transporters for whether they present signi cant expression in connection with the tumor appearance of CRC. METHODS: In this case-control study, the messenger ribonucleic acids were isolated from the blood of 62 CRC patients who were recruited from King Abdulaziz University Hospital Oncology Clinic and 46 controls from King Fahad General Hospital Blood Bank (Jeddah, Saudi Arabia) from September 2016 to March 2017. The Biomedical Ethics Unit at King Abdulaziz University, Jeddah, Saudi Arabia approved this study. The expressions of ABC transporters were measured using quantitative polymerase chain reaction. GraphPad Prism 5 and REST 2009 Software were used to correlate the expressions with clinicopathological independent stages and body mass index. A p-value of less than 0.05 was considered significant. RESULTS: The results showed that the 3 ABC transporters, particularly ABCC1 (p less than 0.0001), were highly expressed in the blood of CRC patients compared with controls. However, none of the 3 transporters was related to the progression of CRC, age, gender, or body mass index. CONCLUSION: The expressions of ABC transporters were found to be significantly higher in CRC patients, and they may act as diagnostic markers and should potentially be tested for their contribution to drug sensitivity in CRC patients.


Subject(s)
ATP-Binding Cassette Transporters/blood , Biomarkers, Tumor/blood , Colorectal Neoplasms/diagnosis , Gene Expression , ATP Binding Cassette Transporter, Subfamily B/blood , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/blood , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP-Binding Cassette Transporters/genetics , Adult , Aged , Aged, 80 and over , Body Mass Index , Case-Control Studies , Colorectal Neoplasms/pathology , Female , Humans , Male , Middle Aged , Multidrug Resistance-Associated Proteins/blood , Multidrug Resistance-Associated Proteins/genetics , Neoplasm Proteins/blood , Neoplasm Proteins/genetics , Polymerase Chain Reaction , Saudi Arabia
12.
J Cancer Res Ther ; 15(5): 1098-1104, 2019.
Article in English | MEDLINE | ID: mdl-31603117

ABSTRACT

BACKGROUND: Zamzam water (ZW) is a natural alkaline water that contains several minerals that may represent a powerful tool for cancer therapy. OBJECTIVES: In this research, in vitro antiproliferative and apoptotic effects of ZW were investigated in the human breast cancer cell line MCF-7. MATERIALS AND METHODS: This study was conducted between January 2015 and February 2016. The effects of ZW on the morphology and the cell viability of human breast cancer cell line MCF-7 were determined. The cell death type and cell cycle changes were investigated using flow cytometry. Finally, reactive oxygen species (ROS) were also measured by fluorometric technique. RESULTS: MCF-7 cells treated with either ZW with adjusted pH at 7.2 or unadjusted pH at 8 showed reduced cell viability of cancerous cells. The cell death occurred through the apoptosis pathway under both treatment conditions. The treated MCF-7 cells were arrested in the G2/M phase and decreased in the G1 phase. Only the unadjusted pH ZW sample demonstrated an increase in the production of both cytoplasmic and mitochondrial ROS in MCF-7 cells. CONCLUSION: All the results in the present study indicated, for the first time, that ZW might have anticancer and apoptotic effects on breast cancer cell line.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Cell Proliferation/drug effects , Water/pharmacology , Breast Neoplasms/metabolism , Caspases/metabolism , Cell Cycle , Cell Division/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Female , G2 Phase/drug effects , Humans , MCF-7 Cells , Reactive Oxygen Species/metabolism
13.
Int J Health Sci (Qassim) ; 13(5): 18-21, 2019.
Article in English | MEDLINE | ID: mdl-31501648

ABSTRACT

Objective: This study aimed to assess the relationship between chemerin and visfatin concentrations and insulin resistance in Saudi women with hyperthyroidism. Materials and Methods: Seventy healthy participants and 70 participants with hyperthyroidism were recruited for the study. Concentrations of chemerin, visfatin, thyroid profile, fasting glucose, insulin, and homeostatic model assessment of insulin resistance (HOMA-IR) were measured. Results: Hyperthyroid patients showed significantly higher concentrations of fasting glucose and insulin (P < 0.001) and significant increases in HOMA-IR values than the control group. Spearman's correlation coefficient analysis showed that thyroid-stimulating hormone was negatively correlated with glucose, insulin, and HOMA-IR, while free triiodothyronine was positively correlated with the same parameters. Total triiodothyronine and total thyroxine also showed a significant positive correlation with glucose, and the levels of thyroglobulin were also positively correlated with insulin and HOMA-IR. Furthermore, chemerin levels correlated positively with glucose, insulin, and HOMA-IR. Inversely, visfatin was negatively correlated with insulin and HOMA-IR. Conclusion: A significant relationship was observed between adipokines and thyroid profile, glucose, insulin, and insulin resistance in hyperthyroid patients. This suggests that visfatin and chemerin levels might affect insulin sensitivity in conjunction with thyroid hormones and thus may alter the metabolism of glucose and leads to insulin resistance.

14.
Int J Health Sci (Qassim) ; 13(2): 44-47, 2019.
Article in English | MEDLINE | ID: mdl-30983945

ABSTRACT

Objectives: The aim of this study was to investigate the potential influence of hyperthyroidism on serum chemerin, visfatin, and omentin concentrations. The relationship between these adipokines and thyroid profile values was also investigated. Methods: A total of 140 female Saudi participants aged 20-45 years were recruited and divided into two groups, the euthyroid control group (n = 70) and the hyperthyroidism group (n = 70). Chemerin, visfatin, omentin, and thyroid profile including thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), free thyroxine (FT4), total triiodothyronine (TT3), total thyroxine (TT4), and thyroglobulin were measured for all participants. Results: Serum chemerin levels were significantly higher in patients with hyperthyroidism compared to the controls. In contrast, serum visfatin and omentin concentrations were significantly lower in hyperthyroid patients than controls. Moreover, serum chemerin concentrations were positively correlated with TT3, TT4, and FT3 and negatively correlated with TSH and FT4. A negative correlation was also found between FT4 and TT4 and serum visfatin concentrations. Inversely, TSH correlated positively with serum visfatin levels. No significant correlation was observed between serum omentin concentrations and any of the thyroid profile variables except FT3. Conclusion: Hyperthyroidism influences serum chemerin, visfatin, and omentin concentrations, and these adipokines are correlated with thyroid hormones.

15.
Saudi Med J ; 40(3): 224-229, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30834416

ABSTRACT

OBJECTIVES: To determine the role of G128C and C218T variants in ABCC1 gene with the risk of developing colon cancer in Jeddah, Kingdom of Saudi Arabia. Methods: This case-control study was conducted on 51 colon cancer patients and 65 controls from King Abdulaziz University Hospital and King Abdullah Medical City in the period from January 2015 to April 2017, and was approved by the Unit of Biomedical Ethics (no: 261-15). Experiments were performed in the experimental biochemistry unit at King Fahd Medical Research Center. The genotype distributions and allele frequencies were determined by polymerase chain reaction-restriction fragments length polymorphism (PCR-RFLP) and DNA sequencing. A Chi-square test was used to determine allele and genotype distributions, odds ratio (OR), risk ratio (RR) and 95% confidence intervals (CI). P-values of less than 0.05 were considered statistically significant. Results: The results showed a novel association between heterozygous (CT) genotype for variant C218T and increased risk of colon cancer [OR=3.4, 95% CI (1.56-7.48), and RR=1.92, 95% CI (1.26-2.93), p=0.002]. These ratios were correlated with high-grade stages (III and IV). In contrast, for variant G128C, there was no significant association with the risk of developing colon cancer. Conclusion: The novel findings of the study revealed that the CT genotype of variant C218T in ABCC1 gene may increase the risk of developing colon cancer.


Subject(s)
Colonic Neoplasms/genetics , Multidrug Resistance-Associated Proteins/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , Colonic Neoplasms/pathology , Gene Frequency , Heterozygote , Humans , Middle Aged , Neoplasm Staging , Polymorphism, Single Nucleotide , Risk Factors
16.
Afr Health Sci ; 19(3): 2476-2483, 2019 Sep.
Article in English | MEDLINE | ID: mdl-32127820

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the most prevalent cancers in Saudi Arabia that is highly characterized with poor survival rate and advanced metastasis. Many studies contribute this poor outcome to the expression of ABC transporters on the surface of cancer cells. OBJECTIVES: In this study, two ABCB1 variants, C3435T and T129C, were examined to evaluate their contribution to CRC risk. METHODS: 125 subjects (62 CRC patients and 63 healthy controls) were involved. The DNA was isolated and analyzed with PCR-RFLP to determine the different genotypes. The hardy-Weinberg equilibrium was performed to determine genotype distribution and allele frequencies. Fisher's exact test (two-tailed) was used to compare allele frequencies between patients and control subjects. RESULTS: The study showed that for SNP C3435T, the population of both CRC patients and controls were out of Hardy-Weinberg equilibrium. Genotype distribution for CRC patients was (Goodness of fit χ2 = 20, df= 1, P≤0.05), whereas, for the controls the genotype distribution was (Goodness of fit χ2 = 21, df =1, P ≤0.05). For SNP T129C, all subjects showed normal (TT) genotype. CONCLUSION: There was no significant association between ABCB1 3435C>T and 129T>C polymorphisms with CRC risk.


Subject(s)
Colorectal Neoplasms/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , Aged , Aged, 80 and over , Case-Control Studies , Female , Genetic Predisposition to Disease , Genotype , Humans , Male , Middle Aged , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Saudi Arabia
17.
Malays J Med Sci ; 24(3): 15-25, 2017 May.
Article in English | MEDLINE | ID: mdl-28814929

ABSTRACT

BACKGROUND: Zamzam water is naturally alkaline and rich in a variety of minerals which may represent a powerful tool for cancer therapy. In this research, the cytotoxic effects of Zamzam water were investigated in human lung cancer (A549) cell line and compared with human skin fibroblasts (HSF). METHODS: Two different preparations of Zamzam water were used: Z1, with pH adjusted to 7.2 and Z2, with no pH adjustment. The effects of both treatments on the morphology of the A549 and HSF cell lines were investigated. The cell viability of HSF and A549 cells was identified by the MTT assay and trypan blue exclusion. Detection of apoptotic cells and cell cycle analyses were determined using flow cytometry. Moreover, reactive oxygen species (ROS) were measured for both cell lines. RESULTS: Both Zamzam water treatments, Z1 and Z2 showed reductions in the cell viability of A549 cells. Cell death occurred via necrosis among cells treated with Z2. Cell cycle arrest occurred in the G0/G1 phases for cells treated with Z2. Cellular and mitochondrial ROS productions were not affected by either treatment. CONCLUSION: Our findings indicate that Zamzam water might have potential therapeutic efficacy for lung cancer.

18.
Nutr Cancer ; 69(4): 674-681, 2017.
Article in English | MEDLINE | ID: mdl-28323499

ABSTRACT

Egg yolk peptides were successfully prepared from egg yolk protein by-products after lecithin extraction. Defatted egg yolk protein was hydrolyzed with pepsin and pancreatin and purified by gel filtration to produce egg yolk gel filtration fraction (EYGF-33) with antiproliferative activity. The highlight of this study was that the peptide EYGF-33 (1.0 mg/ml) significantly inhibits cell viability of colon cancer cells (Caco-2) with no inhibitory effects on the viability of human colon epithelial normal cells (HCEC) after 48 h. Reduced cell viability can be explained by cell cycle arrest in the S-phase in which DNA replication normally takes place. EYGF-33 significantly enhanced the production of superoxide anions in the mitochondria of Caco-2 cells; this could activate a mitochondrial apoptotic pathway leading to typical Poly Adenosine diphosphate-ribose polymerase (PARP) cleavage as observed in the Western blot result. The induction of apoptotic cell death by EYGF-33 was supported by the externalization of phosphatidylserine (PS). However, further elucidation of the mechanism of EYGF-33-mediated apoptosis would provide further support for its use as a potential therapeutic and chemopreventive agent.


Subject(s)
Anticarcinogenic Agents/pharmacology , Egg Proteins/pharmacology , Apoptosis/drug effects , Caco-2 Cells/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Colonic Neoplasms/pathology , Colonic Neoplasms/prevention & control , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Peptides/pharmacology , Phosphatidylserines/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Reactive Oxygen Species/metabolism , Superoxides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...