Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Oncol ; 5: 183, 2015.
Article in English | MEDLINE | ID: mdl-26322273

ABSTRACT

Molecular mechanisms involved in pathogenesis of malignant melanoma have been widely studied and novel therapeutic treatments developed in recent past years. Molecular targets for therapy have mostly been recognized in the RAS-RAF-MEK-ERK and PI3K-AKT signaling pathways; small-molecule inhibitors were drawn to specifically target key kinases. Unfortunately, these targeted drugs may display intrinsic or acquired resistance and various evidences suggest that inhibition of a single effector of the signal transduction cascades involved in melanoma pathogenesis may be ineffective in blocking the tumor growth. In this sense, a wider comprehension of the multiple molecular alterations accounting for either response or resistance to treatments with targeted inhibitors may be helpful in assessing, which is the most effective combination of such therapies. In the present review, we summarize the known molecular mechanisms underlying either intrinsic and acquired drug resistance either alternative roads to melanoma pathogenesis, which may become targets for innovative anticancer approaches.

2.
J Transl Med ; 12: 272, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25253066

ABSTRACT

BACKGROUND: Polymorphisms in the excision repair cross-complimentary group 1 (ERCC1) gene have been involved in the prognosis of various cancers. In the present study, we evaluated the prognostic role of the two most common ERCC1 polymorphisms in patients with T4 breast cancer receiving platinum-based chemotherapy. METHODS: A total of 47 patients with T4 breast cancer undergoing treatment with a platinum-based regimen were collected and followed up (median 159 months; range, 42-239 months). ERCC1 C8092A (rs3212986) and T19007C (rs11615) polymorphisms were genotyped, using an automated sequencing approach. The same series was screened for BRCA1/2 mutations by DHPLC analysis and DNA sequencing. RESULTS: Among the tested patients, 16 (34%) and 25 (53%) presented the 8092A (homo-zygosity A/A or heterozygosity A/C) and the 19007C (homozygosity C/C or heterozygosity C/T) genotypes, respectively. The 8092A and 19007C genotypes in ERCC1 were significantly associated with overall survival in T4 breast cancer patients treated with chemotherapy containing platinum (p-values = 0.036 and 0.004, respectively). Univariate and multivariate Cox regression analyses showed that combination of 8092A and 19007C genotypes acts as a significant prognostic factor in women with T4 breast cancer receiving platinum-based chemotherapy (p-values = 0.022 and 0.049, respectively). Two (4.3%) out of 47 cases were found to carry BRCA1/2 mutations; they presented the highest overall survival rates into the series. CONCLUSIONS: The ERCC1 8092A and 19007C genotypes or their combination may predict a favorable prognosis in T4 breast cancer patients undergoing a platinum-based treatment. Further large-scale, prospective studies are needed to validate our findings.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Breast Neoplasms/drug therapy , Cisplatin/administration & dosage , DNA-Binding Proteins/genetics , Endonucleases/genetics , Polymorphism, Genetic , Adult , Aged , Breast Neoplasms/genetics , Female , Genes, BRCA1 , Genes, BRCA2 , Humans , Middle Aged , Prognosis
3.
Cancer Lett ; 274(2): 331-6, 2009 Feb 18.
Article in English | MEDLINE | ID: mdl-19004544

ABSTRACT

Melanoma is the most aggressive form of skin cancer, it originates from melanocytes and its incidence has increased in the last decade. Recent advances in the understanding of the underlying biology of the progression of melanoma have identified key signalling pathways that are important in promoting melanoma tumourigenesis, thus providing dynamic targets for therapy. One such important target identified in melanoma tumour progression is the Nuclear Factor-kappaB (NF-kappaB) pathway. In vitro studies have shown that NF-kappaB binding is constitutively elevated in human melanoma cultures compared to normal melanocytes. It has been found that a short cell-permeable peptide spanning the IKK-beta NBD, named NBD peptide, disrupted the association of NEMO with IKKs in vitro and blocked TNFalpha-induced NF-kappaB activation in vivo. In the present study we investigated the effect of the NBD peptide on NF-kappaB activity and survival of A375 human melanoma cells. We found that NBD peptide is able to inhibit the proliferation of A375 cells, which present constitutively elevated NF-kappaB levels. Inhibition of cell proliferation by NBD peptide was associated with direct inhibition of constitutive NF-kappaB DNA-binding activity and induction of apoptosis by activation of caspase-3 as confirmed by the cleavage and consequently inactivation of poly (ADP ribose) polymerase (PARP-1) known as the best marker of this process.


Subject(s)
Cell Proliferation , I-kappa B Kinase/physiology , Melanoma/pathology , Cell Line, Tumor , Electrophoretic Mobility Shift Assay , Flow Cytometry , Humans , NF-kappa B/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL