Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Iran J Microbiol ; 15(2): 325-335, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37193238

ABSTRACT

Background and Objectives: Previous researchers showed the antimicrobial ability of ionic liquids (ILs) on different infective agents. ILs can dissolve organic components, especially DNA molecules. Among synthesized eight binary ILs mixtures, we have chosen ([Met-HCl] [PyS]) IL for determining the antifungal ability of IL against Candida albicans cells. Materials and Methods: Well diffusion assay, chrome agar and Germ tube tests were used to detect the Candida samples. PCR, real-time-PCR, and flow cytometry tests were performed to determine the IL's rate of toxic ability. Results: Well diffusion assay revealed the diameters of the growth inhibition zones were the largest in IL with methionine and Proline amino acids. Minimum inhibitory concentration (MIC) and the Minimum fungicidal concentration (MFC) tests showed that they inhibited the growth of the C. albicans at a range from 250 µg/ml for sensitivity and 400 µg/ml for resistance, MIC average of all samples were 341.62 ± 4.153 µg/ml. IL reduced the expression of CDR1 and CDR2 the genes encoded by the major protein of ABC system transporter by 2.1 (P= 0.009) and 1.2 fold (P= 0.693), revealed by PCR and real time-PCR. In the flow cytometry test, there were increasing dead cells after treating with the ([Met-HCl] [PyS]) even in the most resistant strain. Conclusion: The novel IL was effective against the most clinical and standard C. albicans.

2.
Curr Drug Discov Technol ; 20(5): e010523216388, 2023.
Article in English | MEDLINE | ID: mdl-37138475

ABSTRACT

BACKGROUND: Nanoparticle biology is preferable to other common methods due to its economic efficiency and compatibility with the environment. On the other hand, the prevalence of drug-resistant bacterial strains is expanding and it is necessary to use alternative antibiotic compounds to deal with them. The aim of the present study was the biosynthesis of zinc oxide nanoparticles(ZnO NPs) by Lactobacillus spp. and their antimicrobial effect. METHODS: In this study, after the biosynthesis of ZnO NPs by Lactobacillus spp, Characterization of Nanoparticulation Was performed by UV-Vis, XRD, and Scanning Electron Microscopy (SEM). Additionally, Lactobacillus spp. - ZnO NPs were assessed for their antimicrobial properties. RESULTS: UV-visible spectroscopy confirmed the Lactobacillus spp. - ZnO NPs absorbed UV in the region of 300-400 nm. XRD analysis showed the presence of zinc metal in nanoparticles. SEM revealed that Lactobacillus plantarum - ZnO NPs were smaller than the others. Staphylococcus aureus showed the largest non-growth halo diameter against ZnO NPs synthesized by L. plantarum ATCC 8014 (3.7 mm). E. coli had the largest growth halo diameter against ZnO NPs synthesized by L. casei (3 mm) and L. plantarum (2.9 mm). The MIC values of ZnO NPs synthesized by L. plantarum ATCC 8014, L.casei ATCC 39392, L. fermenyum ATCC 9338, L. acidophilus ATCC 4356 were 2,8,8 and 4 µg/mL for Staphylococcus aureus. The MIC values of ZnO NPs synthesized by L. plantarum ATCC 8014, L. casei ATCC 39392, L. fermenyum ATCC 9338, L. acidophilus ATCC 4356 were 2, 4, 4, and 4 µg/ml for E. coli. The lowest MICs were 2 µg/ml for E. coli and S. aureus related to ZnO NPs synthesized by L. plantarum ATCC 8014. MIC and MBC values were equivalent to each other. CONCLUSION: The results of this research show that ZnO NPs synthesized by L. plantarum ATCC 8014 have more antimicrobial effects than other ZnO NPs used. Therefore, the ZnO NPs made with Lactobacillus plantarum ATCC 8014 have the potential to kill bacteria and can be considered a candidate for antibiotic replacement.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Nanoparticles , Zinc Oxide , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Staphylococcus aureus , Lactobacillus , Escherichia coli , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria , Microbial Sensitivity Tests , Plant Extracts/pharmacology , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL