Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Publication year range
1.
Curr Eye Res ; : 1-7, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39139124

ABSTRACT

PURPOSE: Neodymium yttrium aluminum garnet (Nd:YAG) laser capsulotomy is considered gold standard in the treatment of posterior capsule opacification (PCO). In this laboratory study, we measured spectral transmission to evaluate the image contrast and analyze the impact of Nd:YAG associated defects in presbyopia-correcting intraocular lenses (IOLs). METHODS: Two hydrophobic, acrylic IOLs as classic multifocal lenses with diffractive ring segments and different amount of near addition (A, B), one hydrophilic, trifocal IOL (C), one sector-shaped, plate haptic IOL (D) and one hydrophobic, enhanced depth of focus (EDOF) IOL (E) were studied. Measurements included surface topography characterization, United States Air Force resolution test chart (USAF) analysis, spectral transmittance measurements and through focus contrast measurement. Measurements were done with unaltered samples, damages (n = 7) were intentionally created in the central 3.5 mm zone using a photodisruption laser (2.0 mJ) and measurements were repeated. RESULTS: Significant differences were shown between unmodified samples and samples with YAG pits. The YAG-pits decreased the image contrast and spectral transmission and changed results of USAF test images. The imaging contrast decreased to 66%, 64%, 60%, 52% and 59% with the YAG shots in samples (A-E). The light transmission decreased to 88%, 87%, 92%, 79% and 91% (A-E) on average between 400 nm to 800 nm. In all IOLs a reduction of the relative intensity of transmitted light was observed. CONCLUSION: The image performance of all tested presbyopia-correcting IOLs is significantly influenced and disturbed by YAG-pits. The intensity of transmitted light is reduced in the wavelength between 450-800 nm. USAF test targets show worse results compared to unmodified samples and contrast is significantly deteriorated. No ranking/rating among tested IOLs should be made as many other factors play a role in real world scenario. High care should be taken when performing Nd:YAG capsulotomy on premium IOLs to avoid any damages.

2.
BMC Ophthalmol ; 23(1): 397, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37784029

ABSTRACT

BACKGROUND: To compare 2 different design scenarios of EDOF-IOLs inserted in the Liou-Brennan schematic model eye using raytracing simulation as a function of pupil size. METHODS: Two EDOF IOL designs were created and optimized for the Liou-Brennan schematic model eye using Zemax ray tracing software. Each lens was optimized to achieve a maximum Strehl ratio for intermediate and far vision. In the first scenario, the object was located at infinity (O1), and the image plane was positioned at far focus (I1) and intermediate focus (I2) to emulate far and intermediate distance vision, respectively. In the second scenario, the image plane was fixed at I1 according to the first scenario. The object plane was set to infinity (O1) for far-distance vision and then shifted closer to the eye (O2) to reproduce the corresponding intermediate vision. The performance of both IOLs was simulated for the following 3 test conditions as a function of pupil size: a) O1 to I1, b) O1 to I2, and c) O2 to I1. To evaluate the imaging performance, we used the Strehl ratio, the root-mean-square (rms) of the spot radius, and the spherical aberration of the wavefront for various pupil sizes. RESULTS: Evaluating the imaging performance of the IOLs shows that the imaging performance of the IOLs is essentially identical for object/image at O1/I1. Designed IOLs perform dissimilarly to each other in near-vision scenarios, and the simulations confirm that there is a slight difference in their optical performance. CONCLUSION: Our simulation study recommends considering the difference between object shift and image plane shift in design and test conditions to achieve more accurate pseudoaccommodation after cataract surgery.


Subject(s)
Lenses, Intraocular , Humans , Prosthesis Design , Vision, Ocular , Computer Simulation
3.
PLoS One ; 17(8): e0272705, 2022.
Article in English | MEDLINE | ID: mdl-35930598

ABSTRACT

Photopsia is a photic phenomenon that can be associated with intraocular lenses after cataract surgery. To calculate the relative light intensity of photic effects observed after cataract surgery at the foveal region as the most sensitive region of the retina, photopsia was simulated using the ZEMAX optical design software. The simulations are based on the Liou-Brennan eye model with a pupil diameter of 4.5 mm and incorporating implanted IOLs. The hydrophilic IOLs implanted in the eye model have a power of 21 diopter (D) with an optic diameter of 6 mm and 7 mm. Four different intensity detectors are located in specific regions of the eye in this simulation. The ray-tracing analysis was carried out for variations of incident ray angle of 0° to 90° (temporally) in steps of 1°. Depending on the range of incident ray angle, the light intensity was detected at detectors located on the fovea, nasal side of the retina, or the edge surface of the IOLs. Some portion of the input light was detected at specific incident angles in the foveal region. By altering the IOLs edge design to a fully reflective or anti-reflective surface, the range over which the light intensity is detected on the fovea can be shifted. Additionally, with the absorbing edge design, no intensity was detected at the foveal region for incident ray angles larger than 5°. Therefore an absorbing edge design can make photic effects less disturbing for patients.


Subject(s)
Cataract , Lenses, Intraocular , Computer Simulation , Humans , Light , Optics and Photonics , Prosthesis Design , Vision Disorders
4.
PLoS One ; 17(5): e0269119, 2022.
Article in English | MEDLINE | ID: mdl-35617340

ABSTRACT

Tomography data of the cornea usually contain useful information for ophthalmologists. Zernike polynomials are often used to characterize and interpret these data. One of the major challenges facing researchers is finding the appropriate number of Zernike polynomials to model measured data from corneas. It is undeniable that a higher number of coefficients reduces the fit error. However, utilizing too many coefficients consumes computational power and time and bears the risk of overfitting as a result of including unnecessary components. The main objective of the current study is to analyse the accuracy of corneal surface data modelled with Zernike polynomials of various degrees in order to estimate a reasonable number of coefficients. The process of fitting the Zernike polynomials to height data for corneal anterior and posterior surfaces is presented and results are shown for normal and pathological corneas. These results indicate that polynomials of a higher degree are required for fitting corneas of patients with corneal ectasia than for normal corneas.


Subject(s)
Cornea , Corneal Diseases , Algorithms , Cornea/pathology , Corneal Diseases/pathology , Corneal Topography/methods , Humans
5.
PLoS One ; 17(1): e0262457, 2022.
Article in English | MEDLINE | ID: mdl-35051191

ABSTRACT

Photopsia is a phenomenon that sometimes disturbs patients after cataract surgery. To evaluate the impact of the edge design of intraocular lenses (IOL) on the location, shape and relative intensity of photic effects at the retina caused by photopsia in pseudophakic eyes, photopsia was simulated using ZEMAX software. The structural parameters of the pseudophakic eye model are based on the Liou-Brennan eye model parameters with a pupil diameter of 4.5 mm. The IOLs implanted in the eye model have a power of 21 diopter (D) with optical diameter of 6 mm and 7 mm. From the ray-tracing analysis, covering variations of incident ray angle of 50° to 90° from temporally, a photic image is detected at the fovea at specific ray angles of 77.5° (6 mm IOL) and 78.2° (7 mm IOL). This photic image disappears when a thin IOL with an edge thickness of 0 mm or a thick IOL with absorbing edges is replaced in the eye model. With an anti-reflective edge, this photic image remains, but with a fully reflecting edge it disappears at the critical angles and appears with different shapes at other angles. The intensity of this photic image can be reduced by changing the edge design to a frosted surface. Most of the photic patterns in IOLs are not observed with absorbing and thin edge designs. IOLs with anti-reflecting and fully reflecting edges generate disturbing photic effects at different angles on the fovea. IOLs with frosted edges reduce the contrast of the photic effects and make them less disturbing for patients.


Subject(s)
Cataract Extraction/adverse effects , Computer Simulation , Models, Biological , Pseudophakia/etiology , Vision Disorders/etiology , Humans , Photic Stimulation , Pseudophakia/physiopathology , Scattering, Radiation , Vision Disorders/physiopathology
6.
Ophthalmologe ; 118(8): 828-837, 2021 Aug.
Article in German | MEDLINE | ID: mdl-32997197

ABSTRACT

BACKGROUND AND PURPOSE: The effect of lens decentration and tilt on retinal image quality has been extensively studied in the past in simulations and clinical studies. The purpose of this study was to analyze the effect of combined lens decentration and tilt on the induction of defocus, astigmatism and coma in phakic and pseudophakic eyes. METHODS: Simulations were performed with Zemax on the Liou-Brennan schematic model eye. Based on the position of the gradient lens the image plane was determined (best focus). The lens was decentered horizontally from -1.0 mm to 1.0 mm in steps of 0.2 mm and tilted with respect to the vertical axis from -10° to 10° in steps of 2° (in total 121 combinations of decentration and tilt). For each combination of decentration and tilt defocus, astigmatism (in 0/180°) and horizontal coma was extracted from wave front error and recorded for a pupil size of 4 mm. After replacement of the gradient lens with an aberration correcting artificial lens implant model with the equatorial plane of the artificial lens aligned to the equatorial plane of the gradient lens, the simulations were repeated for the pseudophakic eye model. RESULTS: For the lens positioned according to the Liou-Brennan schematic model eye the simulation yielded a defocus of 0.026 dpt/-0.001 dpt, astigmatism of -0.045 dpt/-0.018 dpt, and a coma of -0.015 µm/0.047 µm for phakic/pseudophakic eyes. Maximum values were observed for a horizontal decentration of 1.0 mm and a tilt with respect to the vertical axis of 10° with 1.547 dpt/2.982 dpt for defocus, 0.971 dpt/1.871 dpt for astigmatism, and 0.441 µm/1.209 µm for coma. Maximum negative values occurred in phakic/pseudophakic eyes with -0.293 dpt/-1.224 dpt for defocus, for astigmatism -0.625 dpt/-0.663 dpt and for coma -0.491 µm /-0.559 µm, respectively. CONCLUSION: In this simulation study the effect of a combination of lens decentration in horizontal direction and tilt with respect to the vertical axis on defocus, astigmatism and horizontal coma was analyzed. The results may help to describe in clinical routine if with a decentered or tilted artificial lens implant the postoperative refraction does not match the target refraction or the resulting astigmatism after cataract surgery is not fully explained by measurement of corneal astigmatism.


Subject(s)
Astigmatism , Lens, Crystalline , Lenses, Intraocular , Coma , Humans
SELECTION OF CITATIONS
SEARCH DETAIL