Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
2.
Development ; 144(14): 2629-2639, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28619820

ABSTRACT

Arterial specification and differentiation are influenced by a number of regulatory pathways. While it is known that the Vegfa-Notch cascade plays a central role, the transcriptional hierarchy controlling arterial specification has not been fully delineated. To elucidate the direct transcriptional regulators of Notch receptor expression in arterial endothelial cells, we used histone signatures, DNaseI hypersensitivity and ChIP-seq data to identify enhancers for the human NOTCH1 and zebrafish notch1b genes. These enhancers were able to direct arterial endothelial cell-restricted expression in transgenic models. Genetic disruption of SoxF binding sites established a clear requirement for members of this group of transcription factors (SOX7, SOX17 and SOX18) to drive the activity of these enhancers in vivo Endogenous deletion of the notch1b enhancer led to a significant loss of arterial connections to the dorsal aorta in Notch pathway-deficient zebrafish. Loss of SoxF function revealed that these factors are necessary for NOTCH1 and notch1b enhancer activity and for correct endogenous transcription of these genes. These findings position SoxF transcription factors directly upstream of Notch receptor expression during the acquisition of arterial identity in vertebrates.


Subject(s)
Arteries/embryology , Arteries/metabolism , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism , Amino Acid Sequence , Animals , Animals, Genetically Modified , Arteriovenous Malformations/embryology , Arteriovenous Malformations/genetics , Arteriovenous Malformations/metabolism , Enhancer Elements, Genetic , Female , Gene Expression Regulation, Developmental , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Pregnancy , Receptor, Notch1/deficiency , SOXF Transcription Factors/deficiency , Sequence Homology, Amino Acid , Signal Transduction , Zebrafish , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
3.
Arterioscler Thromb Vasc Biol ; 33(6): 1238-47, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23520166

ABSTRACT

OBJECTIVE: Lymphangiogenesis is regulated by transcription factors and by growth factor pathways, but their interplay has not been extensively studied so far. We addressed this issue in zebrafish. APPROACH AND RESULTS: Mutations in the transcription factor-coding gene SOX18 and in VEGFR3 cause lymphedema, and the VEGFR3/Flt4 ligand VEGFC plays an evolutionarily conserved role in lymphangiogenesis. Here, we report a strong genetic interaction between Sox18 and VegfC in the early phases of lymphatic development in zebrafish. Knockdown of sox18 selectively impaired lymphatic sprouting from the cardinal vein and resulted in defective lymphatic thoracic duct formation. Sox18 and the related protein Sox7 play redundant roles in arteriovenous differentiation. We used a novel transgenic line that enables inducible expression of a dominant-negative mutant form of mouse Sox18 protein. Our data led us to conclude that Sox18 is crucially involved in lymphangiogenesis after arteriovenous differentiation. Combined partial knockdown of sox18 and vegfc, using subcritical doses of specific morpholinos, revealed a synergistic interaction in both venous and lymphatic sprouting from the cardinal vein and greatly impaired thoracic duct formation. CONCLUSIONS: This interaction suggests a previously unappreciated crosstalk between the growth factor and transcription factor pathways that regulate lymphangiogenesis in development and disease.


Subject(s)
Gene Expression Regulation, Developmental , Lymphangiogenesis/genetics , SOXF Transcription Factors/genetics , Signal Transduction/genetics , Vascular Endothelial Growth Factor C/genetics , Animals , Animals, Genetically Modified , Blood Vessels/embryology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mice , Models, Animal , Protein Interaction Domains and Motifs/genetics , SOXF Transcription Factors/metabolism , Sensitivity and Specificity , Vascular Endothelial Growth Factor C/metabolism , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL