Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Viruses ; 15(6)2023 05 26.
Article in English | MEDLINE | ID: mdl-37376555

ABSTRACT

Rapid molecular testing for severe acute respiratory coronavirus 2 (SARS-CoV-2) variants may contribute to the development of public health measures, particularly in resource-limited areas. Reverse transcription recombinase polymerase amplification using a lateral flow assay (RT-RPA-LF) allows rapid RNA detection without thermal cyclers. In this study, we developed two assays to detect SARS-CoV-2 nucleocapsid (N) gene and Omicron BA.1 spike (S) gene-specific deletion-insertion mutations (del211/ins214). Both tests had a detection limit of 10 copies/µL in vitro and the detection time was approximately 35 min from incubation to detection. The sensitivities of SARS-CoV-2 (N) RT-RPA-LF by viral load categories were 100% for clinical samples with high (>9015.7 copies/µL, cycle quantification (Cq): < 25) and moderate (385.5-9015.7 copies/µL, Cq: 25-29.9) viral load, 83.3% for low (16.5-385.5 copies/µL, Cq: 30-34.9), and 14.3% for very low (<16.5 copies/µL, Cq: 35-40). The sensitivities of the Omicron BA.1 (S) RT-RPA-LF were 94.9%, 78%, 23.8%, and 0%, respectively, and the specificity against non-BA.1 SARS-CoV-2-positive samples was 96%. The assays seemed more sensitive than rapid antigen detection in moderate viral load samples. Although implementation in resource-limited settings requires additional improvements, deletion-insertion mutations were successfully detected by the RT-RPA-LF technique.


Subject(s)
COVID-19 , Reverse Transcription , Humans , Recombinases/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity , Mutagenesis, Insertional , COVID-19/diagnosis , COVID-19/genetics , Nucleic Acid Amplification Techniques/methods , Nucleotidyltransferases/genetics
2.
PLoS One ; 15(5): e0233001, 2020.
Article in English | MEDLINE | ID: mdl-32401814

ABSTRACT

Antibodies against influenza virus neuraminidase (NA) protein prevent releasing of the virus from host cells and spreading of infection foci and are considered the 'second line of defence' against influenza. Haemagglutinin inhibition antibody-low responders (HI-LRs) are present among influenza split vaccine recipients. The NA inhibition (NAI) antibody response in vaccinees is worth exploring, especially those in the HI-LRs population. We collected pre- and post-vaccination sera from 61 recipients of an inactivated, monovalent, split vaccine against A/H1N1pdm09 and acute and convalescent sera from 49 unvaccinated patients naturally infected with the A/H1N1pdm09 virus during the 2009 influenza pandemic. All samples were subjected to haemagglutinin inhibition (HI), NAI and neutralisation assays. Most paired sera from naturally infected patients exhibited marked elevation in the NAI activity, and seroconversion rates (SCR) among HI-LRs and HI-responders (HI-Rs) were 60% and 87%, respectively; however, those from vaccinees displayed low increase in the NAI activity, and the SCR among HI-LRs and HI-Rs were 0% and 12%, respectively. In both HI-LRs and HI-Rs, vaccination with the inactivated, monovalent, split vaccine failed to elicit the NAI activity efficiently in the sera of the naive population, compared with the natural infection. Hence, the improvement of influenza vaccines is warranted to elicit not only HI but also NAI antibodies.


Subject(s)
Antibodies, Viral/blood , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Neuraminidase/antagonists & inhibitors , Neuraminidase/immunology , Viral Proteins/antagonists & inhibitors , Viral Proteins/immunology , Adolescent , Adult , Antibodies, Neutralizing/blood , Child , Child, Preschool , Female , History, 21st Century , Humans , Influenza, Human/epidemiology , Japan , Male , Middle Aged , Pandemics/history , Vaccines, Inactivated/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL