Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nano Lett ; 19(5): 3221-3228, 2019 05 08.
Article in English | MEDLINE | ID: mdl-31002257

ABSTRACT

The ability to tune the band-edge energies of bottom-up graphene nanoribbons (GNRs) via edge dopants creates new opportunities for designing tailor-made GNR heterojunctions and related nanoscale electronic devices. Here we report the local electronic characterization of type II GNR heterojunctions composed of two different nitrogen edge-doping configurations (carbazole and phenanthridine) that separately exhibit electron-donating and electron-withdrawing behavior. Atomically resolved structural characterization of phenanthridine/carbazole GNR heterojunctions was performed using bond-resolved scanning tunneling microscopy and noncontact atomic force microscopy. Scanning tunneling spectroscopy and first-principles calculations reveal that carbazole and phenanthridine dopant configurations induce opposite upward and downward orbital energy shifts owing to their different electron affinities. The magnitude of the energy offsets observed in carbazole/phenanthridine heterojunctions is dependent on the length of the GNR segments comprising each heterojunction with longer segments leading to larger heterojunction energy offsets. Using a new on-site energy analysis based on Wannier functions, we find that the origin of this behavior is a charge transfer process that reshapes the electrostatic potential profile over a long distance within the GNR heterojunction.

2.
Nat Commun ; 10(1): 477, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30696830

ABSTRACT

The photon-like behavior of electrons in graphene causes unusual confinement properties that depend strongly on the geometry and strength of the surrounding potential. We report bottom-up synthesis of atomically-precise one-dimensional (1D) arrays of point charges on graphene that allow exploration of a new type of supercritical confinement of graphene carriers. The arrays were synthesized by arranging F4TCNQ molecules into a 1D lattice on back-gated graphene, allowing precise tuning of both the molecular charge and the array periodicity. While dilute arrays of ionized F4TCNQ molecules are seen to behave like isolated subcritical charges, dense arrays show emergent supercriticality. In contrast to compact supercritical clusters, these extended arrays display both supercritical and subcritical characteristics and belong to a new physical regime termed "frustrated supercritical collapse". Here carriers in the far-field are attracted by a supercritical charge distribution, but their fall to the center is frustrated by subcritical potentials in the near-field, similar to trapping of light by a dense cluster of stars in general relativity.

4.
Nano Lett ; 18(6): 3550-3556, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29851493

ABSTRACT

Bottom-up fabrication techniques enable atomically precise integration of dopant atoms into the structure of graphene nanoribbons (GNRs). Such dopants exhibit perfect alignment within GNRs and behave differently from bulk semiconductor dopants. The effect of dopant concentration on the electronic structure of GNRs, however, remains unclear despite its importance in future electronics applications. Here we use scanning tunneling microscopy and first-principles calculations to investigate the electronic structure of bottom-up synthesized N = 7 armchair GNRs featuring varying concentrations of boron dopants. First-principles calculations of freestanding GNRs predict that the inclusion of boron atoms into a GNR backbone should induce two sharp dopant states whose energy splitting varies with dopant concentration. Scanning tunneling spectroscopy experiments, however, reveal two broad dopant states with an energy splitting greater than expected. This anomalous behavior results from an unusual hybridization between the dopant states and the Au(111) surface, with the dopant-surface interaction strength dictated by the dopant orbital symmetry.

5.
Nano Lett ; 18(2): 689-694, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29300484

ABSTRACT

We present the electronic characterization of single-layer 1H-TaSe2 grown by molecular beam epitaxy using a combined angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and density functional theory calculations. We demonstrate that 3 × 3 charge-density-wave (CDW) order persists despite distinct changes in the low energy electronic structure highlighted by the reduction in the number of bands crossing the Fermi energy and the corresponding modification of Fermi surface topology. Enhanced spin-orbit coupling and lattice distortion in the single-layer play a crucial role in the formation of CDW order. Our findings provide a deeper understanding of the nature of CDW order in the two-dimensional limit.

6.
Nat Nanotechnol ; 12(11): 1077-1082, 2017 11.
Article in English | MEDLINE | ID: mdl-28945240

ABSTRACT

The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields.

7.
Adv Mater ; 29(36)2017 Sep.
Article in English | MEDLINE | ID: mdl-28722188

ABSTRACT

A monolayer 2D capping layer with high Young's modulus is shown to be able to effectively suppress the dewetting of underlying thin films of small organic semiconductor molecule, polymer, and polycrystalline metal, respectively. To verify the universality of this capping layer approach, the dewetting experiments are performed for single-layer graphene transferred onto polystyrene (PS), semiconducting thienoazacoronene (EH-TAC), gold, and also MoS2 on PS. Thermodynamic modeling indicates that the exceptionally high Young's modulus and surface conformity of 2D capping layers such as graphene and MoS2 substantially suppress surface fluctuations and thus dewetting. As long as the uncovered area is smaller than the fluctuation wavelength of the thin film in a dewetting process via spinodal decomposition, the dewetting should be suppressed. The 2D monolayer-capping approach opens up exciting new possibilities to enhance the thermal stability and expands the processing parameters for thin film materials without significantly altering their physical properties.

8.
Nat Commun ; 7: 13553, 2016 11 25.
Article in English | MEDLINE | ID: mdl-27886170

ABSTRACT

The ability to understand and control the electronic properties of individual molecules in a device environment is crucial for developing future technologies at the nanometre scale and below. Achieving this, however, requires the creation of three-terminal devices that allow single molecules to be both gated and imaged at the atomic scale. We have accomplished this by integrating a graphene field effect transistor with a scanning tunnelling microscope, thus allowing gate-controlled charging and spectroscopic interrogation of individual tetrafluoro-tetracyanoquinodimethane molecules. We observe a non-rigid shift in the molecule's lowest unoccupied molecular orbital energy (relative to the Dirac point) as a function of gate voltage due to graphene polarization effects. Our results show that electron-electron interactions play an important role in how molecular energy levels align to the graphene Dirac point, and may significantly influence charge transport through individual molecules incorporated in graphene-based nanodevices.

9.
ACS Nano ; 9(12): 12168-73, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26482218

ABSTRACT

We report a scanning tunneling microscopy and noncontact atomic force microscopy study of close-packed 2D islands of tetrafluorotetracyanoquinodimethane (F4TCNQ) molecules at the surface of a graphene layer supported by boron nitride. While F4TCNQ molecules are known to form cohesive 3D solids, the intermolecular interactions that are attractive for F4TCNQ in 3D are repulsive in 2D. Our experimental observation of cohesive molecular behavior for F4TCNQ on graphene is thus unexpected. This self-assembly behavior can be explained by a novel solid formation mechanism that occurs when charged molecules are placed in a poorly screened environment. As negatively charged molecules coalesce, the local work function increases, causing electrons to flow into the coalescing molecular island and increase its cohesive binding energy.

10.
Angew Chem Int Ed Engl ; 54(50): 15143-6, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26482225

ABSTRACT

The thermally induced cyclodehydrogenation reaction of 6,6'-bipentacene precursors on Au(111) yields peripentacene stabilized by surface interactions with the underlying metallic substrate. STM and atomic-resolution non-contact AFM imaging reveal rectangular flakes of nanographene featuring parallel pairs of zig-zag and armchair edges resulting from the lateral fusion of two pentacene subunits. The synthesis of a novel molecular precursor 6,6'-bipentacene, itself a synthetic target of interest for optical and electronic applications, is also reported. The scalable synthetic strategy promises to afford access to a structurally diverse class of extended periacenes and related polycyclic aromatic hydrocarbons as advanced materials for electronic, spintronic, optical, and magnetic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...