Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Primates ; 61(3): 529-542, 2020 May.
Article in English | MEDLINE | ID: mdl-32043166

ABSTRACT

The Philippine tarsier (Tarsius syrichta) is a charismatic species that is threatened by illegal hunting and deforestation. Although they occur in forest and disturbed habitats, ecological information about them is still considerably lacking, which consequently hampers our ability to effectively protect tarsiers from further endangerment. Here, we characterized a 36-ha forest fragment in Mindanao Island where a population of tarsiers persist, and assessed the factors that could have influenced their distribution within the area. We sampled trees (> 1 cm DBH) within 10 × 10-m sampling plots (N = 54), which were established within 1-ha grids (N = 32) and locations where tarsiers were captured (N = 22). The habitat was characterized as a regenerating forest over limestone, with a generally homogeneous structure in terms of tree species richness, abundance, mean DBH, and height. In both sampling plots, we found an abundance of trees below 5 cm in DBH (> 50%) and between 2.6 and 5 m in height (> 40%), which, accordingly, the tarsiers appeared to prefer to use when foraging or sleeping. Lianas were among the most important features of the forest, possibly being a keystone structure in such habitats. Community assemblage, species richness, and mean height of trees, as well as distance to the forest edge, were found to be significant factors that influenced tarsier distribution in the fragment. Our study provides basic yet critical information on the habitat and ecology of Philippine tarsiers in Mindanao, and highlights the importance of forest fragments with rich flora diversity to the survival of the species.


Subject(s)
Animal Distribution , Ecosystem , Forests , Tarsiidae/physiology , Animals , Philippines , Trees
2.
Ecol Lett ; 23(1): 160-171, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31698546

ABSTRACT

Among the local processes that determine species diversity in ecological communities, fluctuation-dependent mechanisms that are mediated by temporal variability in the abundances of species populations have received significant attention. Higher temporal variability in the abundances of species populations can increase the strength of temporal niche partitioning but can also increase the risk of species extinctions, such that the net effect on species coexistence is not clear. We quantified this temporal population variability for tree species in 21 large forest plots and found much greater variability for higher latitude plots with fewer tree species. A fitted mechanistic model showed that among the forest plots, the net effect of temporal population variability on tree species coexistence was usually negative, but sometimes positive or negligible. Therefore, our results suggest that temporal variability in the abundances of species populations has no clear negative or positive contribution to the latitudinal gradient in tree species richness.


Subject(s)
Biodiversity , Trees , Biota , Residence Characteristics
3.
R Soc Open Sci ; 6(4): 182037, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31183134

ABSTRACT

Treeshrews are small, squirrel-like mammals in the order Scandentia, which is nested together with Primates and Dermoptera in the superordinal group Euarchonta. They are often described as living fossils, and researchers have long turned to treeshrews as a model or ecological analogue for ancestral primates. A comparative study of colour vision-encoding genes within Scandentia found a derived amino acid substitution in the long-wavelength sensitive opsin gene (OPN1LW) of the Bornean smooth-tailed treeshrew (Dendrogale melanura). The opsin, by inference, is red-shifted by ca 6 nm with an inferred peak sensitivity of 561 nm. It is tempting to view this trait as a novel visual adaptation; however, the genetic and functional diversity of visual pigments in treeshrews is unresolved outside of Borneo. Here, we report gene sequences from the northern smooth-tailed treeshrew (Dendrogale murina) and the Mindanao treeshrew (Tupaia everetti, the senior synonym of Urogale everetti). We found that the opsin genes are under purifying selection and that D. murina shares the same substitution as its congener, a result that distinguishes Dendrogale from other treeshrews, including T. everetti. We discuss the implications of opsin functional variation in light of limited knowledge about the visual ecology of smooth-tailed treeshrews.

4.
Mitochondrial DNA B Resour ; 4(2): 2499-2503, 2019 Jul 13.
Article in English | MEDLINE | ID: mdl-33365600

ABSTRACT

Sardinella tawilis, the only known freshwater sardinella in the world, is endemic to Taal Lake, Philippines. Previous studies found the Taiwan sardinella, S. hualiensis, to be morphologically very similar to S. tawilis and identified it as the marine sister species of S. tawilis. In this study, DNA barcoding using the mitochondrial cytochrome c oxidase I (COI) gene was carried out to analyze species demarcation in the Sardinella genus, focusing primarily on the relationship between S. tawilis and S. hualiensis. The neighbour-joining (NJ) tree that was constructed using Kimura 2-parameter (K2P) model showed a single clade for the two species with 100% bootstrap support. K2P interspecific genetic divergence ranged from 0% to 0.522%, which is clearly below the suggested 3-3.5% cutoff for species discrimination. Recombination activating gene 1 (RAG1), mitochondrial control region (CR), cytochrome b, 16S rRNA, and S7 markers were used to further validate the results. Sardinella tawilis and S. hualiensis clustered together with a bootstrap support of 99-100% in each of the NJ trees. Low interspecific genetic distances between S. tawilis and S. hualiensis for all the markers except CR could be attributed to incipient allopatric speciation.

5.
PhytoKeys ; (113): 145-155, 2018.
Article in English | MEDLINE | ID: mdl-30584396

ABSTRACT

A new species, Medinillatheresae Fernando, from ultramafic soils on Dinagat and Mindanao Islands, Philippines is described and illustrated. The species is characterized by its terrestrial erect habit, non-setose nodes, 3-plinerved, lanceolate and coriaceous leaves arranged in whorls, cauline or axillary and pendulous inflorescences, rounded flower buds, 4-merous flowers, and straight anthers. It is compared with other similar species in the Medinillapendula Merr. complex.

6.
Nat Ecol Evol ; 2(9): 1436-1442, 2018 09.
Article in English | MEDLINE | ID: mdl-30104751

ABSTRACT

Survival rates of large trees determine forest biomass dynamics. Survival rates of small trees have been linked to mechanisms that maintain biodiversity across tropical forests. How species survival rates change with size offers insight into the links between biodiversity and ecosystem function across tropical forests. We tested patterns of size-dependent tree survival across the tropics using data from 1,781 species and over 2 million individuals to assess whether tropical forests can be characterized by size-dependent life-history survival strategies. We found that species were classifiable into four 'survival modes' that explain life-history variation that shapes carbon cycling and the relative abundance within forests. Frequently collected functional traits, such as wood density, leaf mass per area and seed mass, were not generally predictive of the survival modes of species. Mean annual temperature and cumulative water deficit predicted the proportion of biomass of survival modes, indicating important links between evolutionary strategies, climate and carbon cycling. The application of survival modes in demographic simulations predicted biomass change across forest sites. Our results reveal globally identifiable size-dependent survival strategies that differ across diverse systems in a consistent way. The abundance of survival modes and interaction with climate ultimately determine forest structure, carbon storage in biomass and future forest trajectories.


Subject(s)
Trees , Tropical Climate , Biomass , Carbon , Plant Leaves , Seeds , Temperature , Water
7.
Science ; 360(6391)2018 05 25.
Article in English | MEDLINE | ID: mdl-29798853

ABSTRACT

Hülsmann and Hartig suggest that ecological mechanisms other than specialized natural enemies or intraspecific competition contribute to our estimates of conspecific negative density dependence (CNDD). To address their concern, we show that our results are not the result of a methodological artifact and present a null-model analysis that demonstrates that our original findings-(i) stronger CNDD at tropical relative to temperate latitudes and (ii) a latitudinal shift in the relationship between CNDD and species abundance-persist even after controlling for other processes that might influence spatial relationships between adults and recruits.


Subject(s)
Biodiversity , Trees , Population Density , Seedlings
8.
Science ; 360(6391)2018 05 25.
Article in English | MEDLINE | ID: mdl-29798855

ABSTRACT

Chisholm and Fung claim that our method of estimating conspecific negative density dependence (CNDD) in recruitment is systematically biased, and present an alternative method that shows no latitudinal pattern in CNDD. We demonstrate that their approach produces strongly biased estimates of CNDD, explaining why they do not detect a latitudinal pattern. We also address their methodological concerns using an alternative distance-weighted approach, which supports our original findings of a latitudinal gradient in CNDD and a latitudinal shift in the relationship between CNDD and species abundance.


Subject(s)
Biodiversity , Trees , Ecosystem , Seedlings
9.
Science ; 356(6345): 1389-1392, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28663501

ABSTRACT

Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities.


Subject(s)
Biodiversity , Trees/classification , Antibiosis , Ecosystem , Forests , Geography , Models, Biological , Trees/physiology , Tropical Climate
10.
Philos Trans R Soc Lond B Biol Sci ; 372(1717)2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28193820

ABSTRACT

The short-wavelength sensitive (S-) opsin gene OPN1SW is pseudogenized in some nocturnal primates and retained in others, enabling dichromatic colour vision. Debate on the functional significance of this variation has focused on dark conditions, yet many nocturnal species initiate activity under dim (mesopic) light levels that can support colour vision. Tarsiers are nocturnal, twilight-active primates and exemplary visual predators; they also express different colour vision phenotypes, raising the possibility of discrete adaptations to mesopic conditions. To explore this premise, we conducted a field study in two stages. First, to estimate the level of functional constraint on colour vision, we sequenced OPN1SW in 12 wild-caught Philippine tarsiers (Tarsius syrichta). Second, to explore whether the dichromatic visual systems of Philippine and Bornean (Tarsius bancanus) tarsiers-which express alternate versions of the medium/long-wavelength sensitive (M/L-) opsin gene OPN1MW/OPN1LW-confer differential advantages specific to their respective habitats, we used twilight and moonlight conditions to model the visual contrasts of invertebrate prey. We detected a signature of purifying selection for OPN1SW, indicating that colour vision confers an adaptive advantage to tarsiers. However, this advantage extends to a relatively small proportion of prey-background contrasts, and mostly brown arthropod prey amid leaf litter. We also found that the colour vision of T. bancanus is advantageous for discriminating prey under twilight that is enriched in shorter (bluer) wavelengths, a plausible idiosyncrasy of understorey habitats in Borneo.This article is part of the themed issue 'Vision in dim light'.


Subject(s)
Color Vision , Rod Opsins/genetics , Tarsiidae/physiology , Animals , Borneo , Darkness , Environment , Forests , Rod Opsins/metabolism , Sequence Analysis, DNA , Species Specificity , Tarsiidae/genetics
11.
PhytoKeys ; (61): 37-46, 2016.
Article in English | MEDLINE | ID: mdl-27081348

ABSTRACT

A new species of Rafflesia (Rafflesiaceae) from Luzon Island, Philippines, Rafflesia consueloae Galindon, Ong & Fernando, is described and illustrated. It is distinct from all other species of Rafflesia in its small-sized flowers, the upright perigone lobes, and prominently cream-white disk surface that is often devoid of processes. Its small-sized flowers, with an average diameter of 9.73 cm when fully expanded, make it the smallest of the largest flowers in the world.

12.
Mitochondrial DNA B Resour ; 1(1): 763-766, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-33473620

ABSTRACT

Illegal wildlife trade is one of the key threats to biodiversity. A requisite in combating illegal wildlife trade is through effective and efficient identification of confiscated wildlife or wildlife remains. This can be done through DNA barcoding. In this study, DNA barcoding was employed on several cases of poaching in the Philippines involving 85 unidentified pangolin remains. Of these, 73 specimens confiscated from Palawan were identified as the Palawan endemic Manis culionensis, but no deep divergences were observed, suggesting that the samples originated from a single locality. The other 12 individuals, which were part of a large haul of pangolin carcasses recovered from a foreign fishing vessel that ran aground in Tubattaha Reefs, Philippines, were identified as the Malayan Pangolin, M. javanica. They split into two groups with 3.3% mean genetic distance, suggesting at least two geographic origins.

13.
PLoS One ; 9(8): e104340, 2014.
Article in English | MEDLINE | ID: mdl-25136854

ABSTRACT

Establishment of conservation priorities for primates is a particular concern in the island archipelagos of Southeast Asia, where rates of habitat destruction are among the highest in the world. Conservation programs require knowledge of taxonomic diversity to ensure success. The Philippine tarsier is a flagship species that promotes environmental awareness and a thriving ecotourism economy in the Philippines. However, assessment of its conservation status has been impeded by taxonomic uncertainty, a paucity of field studies, and a lack of vouchered specimens and genetic samples available for study in biodiversity repositories. Consequently, conservation priorities are unclear. In this study we use mitochondrial and nuclear DNA to empirically infer geographic partitioning of genetic variation and to identify evolutionarily distinct lineages for conservation action. The distribution of Philippine tarsier genetic diversity is neither congruent with expectations based on biogeographical patterns documented in other Philippine vertebrates, nor does it agree with the most recent Philippine tarsier taxonomic arrangement. We identify three principal evolutionary lineages that do not correspond to the currently recognized subspecies, highlight the discovery of a novel cryptic and range-restricted subcenter of genetic variation in an unanticipated part of the archipelago, and identify additional geographically structured genetic variation that should be the focus of future studies and conservation action. Conservation of this flagship species necessitates establishment of protected areas and targeted conservation programs within the range of each genetically distinct variant of the Philippine tarsier.


Subject(s)
Conservation of Natural Resources , DNA, Mitochondrial/genetics , Genetic Variation , Phylogeny , Tarsiidae/genetics , Animals , Cell Nucleus/chemistry , Cell Nucleus/genetics , Ecosystem , Female , Genetic Loci , Genetic Speciation , Male , Microsatellite Repeats , Philippines , Phylogeography , Sequence Analysis, DNA , Tarsiidae/classification
14.
Article in English | MEDLINE | ID: mdl-25120441

ABSTRACT

The fovea is a declivity of the retinal surface associated with maximum visual acuity. Foveae are widespread across vertebrates, but among mammals they are restricted to haplorhine primates (tarsiers, monkeys, apes, and humans), which are primarily diurnal. Thus primates have long contributed to the view that foveae are functional adaptations to diurnality. The foveae of tarsiers, which are nocturnal, are widely interpreted as vestigial traits and therefore evidence of a diurnal ancestry. This enduring premise is central to adaptive hypotheses on the origins of anthropoid primates; however, the question of whether tarsier foveae are functionless anachronisms or nocturnal adaptations remains open. To explore this question, we compared the diets of tarsiers (Tarsius) and scops owls (Otus), taxa united by numerous anatomical homoplasies, including foveate vision. A functional interpretation of these homoplasies predicts dietary convergence. We tested this prediction by analyzing stable isotope ratios that integrate dietary information. In Borneo and the Philippines, the stable carbon isotope compositions of Tarsius and Otus were indistinguishable, whereas the stable nitrogen isotope composition of Otus was marginally higher than that of Tarsius. Our results indicate that species in both genera consumed mainly ground-dwelling prey. Taken together, our findings support a functional interpretation of the many homoplasies shared by tarsiers and scops owls, including a retinal fovea. We suggest that the fovea might function similarly in tarsiers and scops owls by calibrating the auditory localization pathway. The integration of auditory localization and visual fixation during prey detection and acquisition might be critical at low light levels.

15.
Biol Lett ; 8(4): 508-11, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22319094

ABSTRACT

Few mammals-cetaceans, domestic cats and select bats and rodents-can send and receive vocal signals contained within the ultrasonic domain, or pure ultrasound (greater than 20 kHz). Here, we use the auditory brainstem response (ABR) method to demonstrate that a species of nocturnal primate, the Philippine tarsier (Tarsius syrichta), has a high-frequency limit of auditory sensitivity of ca 91 kHz. We also recorded a vocalization with a dominant frequency of 70 kHz. Such values are among the highest recorded for any terrestrial mammal, and a relatively extreme example of ultrasonic communication. For Philippine tarsiers, ultrasonic vocalizations might represent a private channel of communication that subverts detection by predators, prey and competitors, enhances energetic efficiency, or improves detection against low-frequency background noise.


Subject(s)
Animal Communication , Evoked Potentials, Auditory, Brain Stem , Sound , Tarsiidae/physiology , Acoustic Stimulation/methods , Animals , Hearing/physiology , Sound Localization , Species Specificity , Tarsiidae/psychology
16.
Mitochondrial DNA ; 22(4): 143-53, 2011 Aug.
Article in English | MEDLINE | ID: mdl-22040082

ABSTRACT

Laguna de Bay, the largest lake in the Philippines, is an important part of the country's fisheries industry. It is also home to a number of endemic fishes including Gobiopterus lacustris (Herre 1927) of family Gobiidae, Leiopotherapon plumbeus (Kner 1864) of family Terapontidae, Zenarchopterus philippinus (Peters 1868) of family Hemiramphidae and Arius manillensis Valenciennes 1840 of family Ariidae. Over the years, a steady decline has been observed in the abundance and diversity of native fishes in the lake due to anthropogenic disturbances. In this study, a total of 71 specimens of 18 different species belonging to 18 genera, 16 families, and seven orders were DNA barcoded using the mitochondrial cytochrome c oxidase subunit I (COI) gene. All of the fish species were discriminated by their COI sequences and one endemic species G. lacustris, showing deep genetic divergence, was highlighted for further taxonomic investigation. Average Kimura 2-parameter genetic distances within species, family, and order were 1.33%, 18.91%, and 24.22%, respectively. These values show that COI divergence increases as taxa become less exclusive. All of the COI sequences obtained were grouped together according to their species designation in the Neighbor-joining tree that was constructed. This study demonstrated that DNA barcoding has great potential as a tool for fast and accurate species identification and also for highlighting species that warrant further taxonomic investigation.


Subject(s)
DNA Barcoding, Taxonomic/methods , Electron Transport Complex IV/genetics , Fishes/classification , Genes, Mitochondrial/genetics , Animals , Base Composition , DNA, Mitochondrial , Fishes/genetics , Lakes , Philippines , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA , Species Specificity
17.
Mol Ecol Resour ; 11(4): 612-9, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21676192

ABSTRACT

This study represents the first molecular survey of the ichthyofauna of Taal Lake and the first DNA barcoding attempt in Philippine fishes. Taal Lake, the third largest lake in the Philippines, is considered a very important fisheries resource and is home to the world's only freshwater sardine, Sardinella tawilis. However, overexploitation and introduction of exotic fishes have caused a massive decline in the diversity of native species as well as in overall productivity of the lake. In this study, 118 individuals of 23 native, endemic and introduced fishes of Taal Lake were barcoded using the partial DNA sequence of the mitochondrial cytochrome c oxidase subunit I (COI) gene. These species belong to 21 genera, 17 families and 9 orders. Divergence of sequences within and between species was determined using Kimura 2-parameter (K2P) distance model, and a neighbour-joining tree was generated with 1000 bootstrap replications using the K2P model. All COI sequences for each of the 23 species were clearly discriminated among genera. The average within species, within genus, within family and within order percent genetic divergence was 0.60%, 11.07%, 17.67% and 24.08%, respectively. Our results provide evidence that COI DNA barcodes are effective for the rapid and accurate identification of fishes and for identifying certain species that need further taxonomic investigation.


Subject(s)
DNA Barcoding, Taxonomic/methods , Fishes/classification , Fishes/genetics , Animals , Cluster Analysis , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Fresh Water , Genetic Variation , Molecular Sequence Data , Philippines , Phylogeny , Sequence Analysis, DNA
18.
Mol Ecol Resour ; 11(2): 245-54, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21429130

ABSTRACT

DNA barcoding is a molecular method that rapidly identifies an individual to a known taxon or its closest relative based on a 650-bp fragment of the cytochrome c oxidase subunit I (COI). In this study, DNA barcodes of members of the family Accipitridae, including Haliastur indus (brahminy kite), Haliaeetus leucogaster (white-bellied sea eagle), Ichthyophaga ichthyaetus (grey-headed fish eagle), Spilornis holospilus (crested serpent-eagle), Spizaetus philippensis (Philippine hawk-eagle), and Pithecophaga jefferyi (Philippine eagle), are reported for the first time. All individuals sampled are kept at the Philippine Eagle Center in Davao City, Philippines. Basic local alignment search tool results demonstrated that the COI sequences for these species were unique. The COI gene trees constructed using the maximum-likelihood and neighbour-joining (NJ) methods supported the monophyly of the booted eagles of the Aquilinae and the sea eagles of the Haliaeetinae but not the kites of the Milvinae.


Subject(s)
Falconiformes/classification , Falconiformes/genetics , Animals , DNA Barcoding, Taxonomic , Molecular Sequence Data , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...