Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biol ; 220(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34347016

ABSTRACT

Cholesterol metabolism operates autonomously within the central nervous system (CNS), where the majority of cholesterol resides in myelin. We demonstrate that TDP-43, the pathological signature protein for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), influences cholesterol metabolism in oligodendrocytes. TDP-43 binds directly to mRNA of SREBF2, the master transcription regulator for cholesterol metabolism, and multiple mRNAs encoding proteins responsible for cholesterol biosynthesis and uptake, including HMGCR, HMGCS1, and LDLR. TDP-43 depletion leads to reduced SREBF2 and LDLR expression, and cholesterol levels in vitro and in vivo. TDP-43-mediated changes in cholesterol levels can be restored by reintroducing SREBF2 or LDLR. Additionally, cholesterol supplementation rescues demyelination caused by TDP-43 deletion. Furthermore, oligodendrocytes harboring TDP-43 pathology from FTD patients show reduced HMGCR and HMGCS1, and coaggregation of LDLR and TDP-43. Collectively, our results indicate that TDP-43 plays a role in cholesterol homeostasis in oligodendrocytes, and cholesterol dysmetabolism may be implicated in TDP-43 proteinopathies-related diseases.


Subject(s)
Cholesterol/metabolism , DNA-Binding Proteins/genetics , Frontotemporal Dementia/genetics , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Animals , DNA-Binding Proteins/deficiency , Disease Models, Animal , Female , Frontal Lobe/metabolism , Frontal Lobe/pathology , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Gene Expression Profiling , Gene Expression Regulation , Humans , Hydroxymethylglutaryl-CoA Synthase/genetics , Hydroxymethylglutaryl-CoA Synthase/metabolism , Lipid Metabolism/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin Sheath/pathology , Oligodendroglia/pathology , Organoids/metabolism , Organoids/pathology , Primary Cell Culture , Receptors, LDL/genetics , Receptors, LDL/metabolism , Signal Transduction , Spinal Cord/metabolism , Spinal Cord/pathology , Sterol Regulatory Element Binding Protein 2/metabolism , Temporal Lobe/metabolism , Temporal Lobe/pathology
2.
J Neurosci ; 39(41): 8038-8050, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31471471

ABSTRACT

Integration and modulation of primary afferent sensory information begins at the first terminating sites within the CNS, where central inhibitory circuits play an integral role. Viscerosensory information is conveyed to the nucleus of the solitary tract (NTS) where it initiates neuroendocrine, behavioral, and autonomic reflex responses that ensure optimal internal organ function. This excitatory input is modulated by diverse, local inhibitory interneurons, whose functions are not clearly understood. Here we show that, in male rats, 65% of somatostatin-expressing (SST) NTS neurons also express GAD67, supporting their likely role as inhibitory interneurons. Using whole-cell recordings of NTS neurons, from horizontal brainstem slices of male and female SST-yellow fluorescent protein (YFP) and SST-channelrhodopsin 2 (ChR2)-YFP mice, we quantified the impact of SST-NTS neurons on viscerosensory processing. Light-evoked excitatory photocurrents were reliably obtained from SST-ChR2-YFP neurons (n = 16) and the stimulation-response characteristics determined. Most SST neurons (57%) received direct input from solitary tract (ST) afferents, indicating that they form part of a feedforward circuit. All recorded SST-negative NTS neurons (n = 72) received SST-ChR2 input. ChR2-evoked PSCs were largely inhibitory and, in contrast to previous reports, were mediated by both GABA and glycine. When timed to coincide, the ChR2-activated SST input suppressed ST-evoked action potentials at second-order NTS neurons, demonstrating strong modulation of primary viscerosensory input. These data indicate that the SST inhibitory network innervates broadly within the NTS, with the potential to gate viscerosensory input to powerfully alter autonomic reflex function and other behaviors.SIGNIFICANCE STATEMENT Sensory afferent input is modulated according to state. For example the baroreflex is altered during a stress response or exercise, but the basic mechanisms underpinning this sensory modulation are not fully understood in any sensory system. Here we demonstrate that the neuronal processing of viscerosensory information begins with synaptic gating at the first central synapse with second-order neurons in the NTS. These data reveal that the somatostatin subclass of inhibitory interneurons are driven by visceral sensory input to play a major role in gating viscerosensory signals, placing them within a feedforward circuit within the NTS.


Subject(s)
Nerve Net/physiology , Neurons/physiology , Sensation/physiology , Sensory Gating/physiology , Somatostatin/physiology , Animals , Feedback, Physiological , Female , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/physiology , Glycine/physiology , Interneurons/physiology , Male , Mice , Nerve Net/cytology , Photic Stimulation , Rats , Rats, Sprague-Dawley , Solitary Nucleus/cytology , Solitary Nucleus/physiology , Visceral Afferents/physiology , gamma-Aminobutyric Acid/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...