Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(3): e2217523120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36634136

ABSTRACT

In both eukarya and bacteria, the addition of Cys to dehydroalanine (Dha) and dehydrobutyrine (Dhb) occurs in various biological processes. In bacteria, intramolecular thia-Michael addition catalyzed by lanthipeptide cyclases (LanC) proteins or protein domains gives rise to a class of natural products called lanthipeptides. In eukarya, dehydroamino acids in signaling proteins are introduced by effector proteins produced by pathogens like Salmonella to dysregulate host defense mechanisms. A eukaryotic LanC-like (LanCL) enzyme catalyzes the addition of Cys in glutathione to Dha/Dhb to protect the cellular proteome from unwanted chemical and biological activity. To date, the mechanism of the enzyme-catalyzed thia-Michael addition has remained elusive. We report here the crystal structures of the human LanCL1 enzyme complexed with different ligands, including the product of thia-Michael addition of glutathione to a Dhb-containing peptide that represents the activation loop of Erk. The structures show that a zinc ion activates the Cys thiolate for nucleophilic attack and that a conserved His is poised to protonate the enolate intermediate to achieve a net anti-addition. A second His hydrogen bonds to the carbonyl oxygen of the former Dhb and may stabilize the negative charge that builds up on this oxygen atom in the enolate intermediate. Surprisingly, the latter His is not conserved in orthologous enzymes that catalyze thia-Michael addition to Dha/Dhb. Eukaryotic LanCLs contain a His, whereas bacterial stand-alone LanCs have a Tyr residue, and LanM enzymes that have LanC-like domains have a Lys, Asn, or His residue. Mutational and binding studies support the importance of these residues for catalysis.


Subject(s)
Peptides , Proteins , Humans , Peptides/chemistry , Glutathione , Bacteria/metabolism , Catalysis , Oxygen
2.
Nat Chem Biol ; 19(4): 460-467, 2023 04.
Article in English | MEDLINE | ID: mdl-36509904

ABSTRACT

Promiscuous enzymes that modify peptides and proteins are powerful tools for labeling biomolecules; however, directing these modifications to desired substrates can be challenging. Here, we use computational interface design to install a substrate recognition domain adjacent to the active site of a promiscuous enzyme, catechol O-methyltransferase. This design approach effectively decouples substrate recognition from the site of catalysis and promotes modification of peptides recognized by the recruitment domain. We determined the crystal structure of this novel multidomain enzyme, SH3-588, which shows that it closely matches our design. SH3-588 methylates directed peptides with catalytic efficiencies exceeding the wild-type enzyme by over 1,000-fold, whereas peptides lacking the directing recognition sequence do not display enhanced efficiencies. In competition experiments, the designer enzyme preferentially modifies directed substrates over undirected substrates, suggesting that we can use designed recruitment domains to direct post-translational modifications to specific sequence motifs on target proteins in complex multisubstrate environments.


Subject(s)
Peptides , Protein Processing, Post-Translational , Peptides/chemistry , Catalytic Domain , Catalysis , Substrate Specificity
3.
Chem Rev ; 122(18): 14722-14814, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36049139

ABSTRACT

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.


Subject(s)
Biological Products , Ribosomes , Biological Products/chemistry , Lipids , Peptides/chemistry , Protein Processing, Post-Translational , RNA/metabolism , Ribosomes/metabolism
4.
Cancer Cell ; 40(9): 1060-1069.e7, 2022 09 12.
Article in English | MEDLINE | ID: mdl-36099883

ABSTRACT

Immunotargeting of tumor-specific antigens is a powerful therapeutic strategy. Immunotherapies directed at MHC-I complexes have expanded the scope of antigens and enabled the direct targeting of intracellular oncoproteins at the cell surface. We asked whether covalent drugs that alkylate mutated residues on oncoproteins could act as haptens to generate unique MHC-I-restricted neoantigens. Here, we report that KRAS G12C mutant cells treated with the covalent inhibitor ARS1620 present ARS1620-modified peptides in MHC-I complexes. Using ARS1620-specific antibodies identified by phage display, we show that these haptenated MHC-I complexes can serve as tumor-specific neoantigens and that a bispecific T cell engager construct based on a hapten-specific antibody elicits a cytotoxic T cell response against KRAS G12C cells, including those resistant to direct KRAS G12C inhibition. With multiple K-RAS G12C inhibitors in clinical use or undergoing clinical trials, our results present a strategy to enhance their efficacy and overcome the rapidly arising tumor resistance.


Subject(s)
Antineoplastic Agents , Histocompatibility Antigens Class I/immunology , Neoplasms , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Antibodies , Antineoplastic Agents/pharmacology , Humans , Immunologic Factors , Immunotherapy , Peptides/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics
5.
Cell Chem Biol ; 29(5): 785-798.e19, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35364007

ABSTRACT

Viruses are responsible for some of the most deadly human diseases, yet available vaccines and antivirals address only a fraction of the potential viral human pathogens. Here, we provide a methodology for managing human herpesvirus (HHV) infection by covalently inactivating the HHV maturational protease via a conserved, non-catalytic cysteine (C161). Using human cytomegalovirus protease (HCMV Pr) as a model, we screened a library of disulfides to identify molecules that tether to C161 and inhibit proteolysis, then elaborated hits into irreversible HCMV Pr inhibitors that exhibit broad-spectrum inhibition of other HHV Pr homologs. We further developed an optimized tool compound targeted toward HCMV Pr and used an integrative structural biology and biochemical approach to demonstrate inhibitor stabilization of HCMV Pr homodimerization, exploiting a conformational equilibrium to block proteolysis. Irreversible HCMV Pr inhibition disrupts HCMV infectivity in cells, providing proof of principle for targeting proteolysis via a non-catalytic cysteine to manage viral infection.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Cysteine , Cytomegalovirus/physiology , Humans , Peptide Hydrolases , Viral Proteases
6.
ACS Catal ; 12(22): 14006-14014, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36793448

ABSTRACT

N-methylation of peptide backbones has often been utilized as a strategy towards the development of peptidic drugs. However, difficulties in the chemical synthesis, high cost of enantiopure N-methyl building blocks, and subsequent coupling inefficiencies have hampered larger-scale medicinal chemical efforts. Here, we present a chemoenzymatic strategy for backbone N-methylation by bioconjugation of peptides of interest to the catalytic scaffold of a borosin-type methyltransferase. Crystal structures of a substrate tolerant enzyme from Mycena rosella guided the design of a decoupled catalytic scaffold that can be linked via a heterobifunctional crosslinker to any peptide substrate of choice. Peptides linked to the scaffold, including those with non-proteinogenic residues, show robust backbone N-methylation. Various crosslinking strategies were tested to facilitate substrate disassembly, which enabled a reversible bioconjugation approach that efficiently released modified peptide. Our results provide general framework for the backbone N-methylation on any peptide of interest and may facilitate the production of large libraries of N-methylated peptides.

7.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34074759

ABSTRACT

The epoxide-containing phosphonate natural product fosfomycin is a broad-spectrum antibiotic used in the treatment of cystitis. Fosfomycin is produced by both the plant pathogen Pseudomonas syringae and soil-dwelling streptomycetes. While the streptomycete pathway has recently been fully elucidated, the pseudomonad pathway is still mostly elusive. Through a systematic evaluation of heterologous expression of putative biosynthetic enzymes, we identified the central enzyme responsible for completing the biosynthetic pathway in pseudomonads. The missing transformation involves the oxidative decarboxylation of the intermediate 2-phosphonomethylmalate to a new intermediate, 3-oxo-4-phosphonobutanoate, by PsfC. Crystallographic studies reveal that PsfC unexpectedly belongs to a new class of diiron metalloenzymes that are part of the polymerase and histidinol phosphatase superfamily.


Subject(s)
Bacterial Proteins/chemistry , Fosfomycin , Hydrolases/chemistry , Metalloproteins/chemistry , Pseudomonas syringae/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hydrolases/genetics , Hydrolases/metabolism , Metalloproteins/genetics , Metalloproteins/metabolism , Pseudomonas syringae/genetics
8.
Proc Natl Acad Sci U S A ; 116(48): 24049-24055, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31719203

ABSTRACT

Enzymes that generate ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products have garnered significant interest, given their ability to produce large libraries of chemically diverse scaffolds. Such RiPP biosynthetic enzymes are predicted to bind their corresponding peptide substrates through sequence-specific recognition of the leader sequence, which is removed after the installation of posttranslational modifications on the core sequence. The conservation of the leader sequence within a given RiPP class, in otherwise disparate precursor peptides, further supports the notion that strict sequence specificity is necessary for leader peptide engagement. Here, we demonstrate that leader binding by a biosynthetic enzyme in the lasso peptide class of RiPPs is directed by a minimal number of hydrophobic interactions. Biochemical and structural data illustrate how a single leader-binding domain can engage sequence-divergent leader peptides using a conserved motif that facilitates hydrophobic packing. The presence of this simple motif in noncognate peptides results in low micromolar affinity binding by binding domains from several different lasso biosynthetic systems. We also demonstrate that these observations likely extend to other RiPP biosynthetic classes. The portability of the binding motif opens avenues for the engineering of semisynthetic hybrid RiPP products.


Subject(s)
Models, Molecular , Peptide Biosynthesis , Amino Acid Sequence , Binding Sites , Conserved Sequence , Protein Processing, Post-Translational
9.
Proc Natl Acad Sci U S A ; 116(27): 13299-13304, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31209034

ABSTRACT

The synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) is an active ingredient of thousands of commercial herbicides. Multiple species of bacteria degrade 2,4-D via a pathway initiated by the Fe(II) and α-ketoglutarate (Fe/αKG)-dependent aryloxyalkanoate dioxygenases (AADs). Recently, genes encoding 2 AADs have been deployed commercially in herbicide-tolerant crops. Some AADs can also inactivate chiral phenoxypropionate and aryloxyphenoxypropionate (AOPP) herbicides, albeit with varying substrate enantioselectivities. Certain AAD enzymes, such as AAD-1, have expanded utility in weed control systems by enabling the use of diverse modes of action with a single trait. Here, we report 1) the use of a genomic context-based approach to identify 59 additional members of the AAD class, 2) the biochemical characterization of AAD-2 from Bradyrhizobium diazoefficiens USDA 110 as a catalyst to degrade (S)-stereoisomers of chiral synthetic auxins and AOPP herbicides, 3) spectroscopic data that demonstrate the canonical ferryl complex in the AAD-1 reaction, and 4) crystal structures of representatives of the AAD class. Structures of AAD-1, an (R)-enantiomer substrate-specific enzyme, in complexes with a phenoxypropionate synthetic auxin or with AOPP herbicides and of AAD-2, which has the opposite (S)-enantiomeric substrate specificity, reveal the structural basis for stereoselectivity and provide insights into a common catalytic mechanism.


Subject(s)
Dioxygenases/metabolism , Herbicide Resistance , Herbicides/metabolism , Plant Proteins/metabolism , 2,4-Dichlorophenoxyacetic Acid/metabolism , Dioxygenases/chemistry , Herbicides/chemistry , Indoleacetic Acids/metabolism , Plant Proteins/chemistry , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/metabolism , Protein Structure, Tertiary , Glycine max , Stereoisomerism , Structure-Activity Relationship , Zea mays
10.
ACS Chem Biol ; 13(10): 2989-2999, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30204409

ABSTRACT

N-methylation of nucleic acids, proteins, and peptides is a chemical modification with significant impact on biological regulation. Despite the simplicity of the structural change, N-methylation can influence diverse functions including epigenetics, protein complex formation, and microtubule stability. While there are limited examples of N-methylation of the α-amino group of bacterial and eukaryotic proteins, there are no examples of catalysts that carry out post-translation methylation of backbone amides in proteins or peptides. Recent studies have identified enzymes that catalyze backbone N-methylation on a peptide substrate, a reaction with little biochemical precedent, in a family of ribosomally synthesized natural products produced in basidiomycetes. Here, we describe the crystal structures of Dendrothele bispora dbOphMA, a methyltransferase that catalyzes multiple N-methylations on the peptide backbone. We further carry out biochemical studies of this catalyst to determine the molecular details that promote this unusual chemical transformation. The structural and biochemical framework described here could facilitate biotechnological applications of catalysts for the rapid production of backbone N-methylated peptides.


Subject(s)
Fungal Proteins/metabolism , Methyltransferases/metabolism , Peptides/metabolism , Agaricales/enzymology , Amino Acid Sequence , Catalytic Domain , Fungal Proteins/chemistry , Fungal Proteins/genetics , Methylation , Methyltransferases/chemistry , Methyltransferases/genetics , Models, Chemical , Mutation , Peptides/chemistry , Protein Binding , Protein Processing, Post-Translational , S-Adenosylhomocysteine/metabolism , S-Adenosylmethionine/metabolism , Substrate Specificity
11.
Biochemistry ; 57(23): 3201-3209, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29553721

ABSTRACT

Circular peptides have long been sought after as scaffolds for drug design as they demonstrate protein-like properties in the context of small, constrained peptides. Traditional routes toward the production of cyclic peptides rely on synthesis or semisynthetic methods, which restrict their use as platforms for the production of large, structurally diverse chemical libraries. Here, we discuss the biosynthetic routes toward the N-C macrocyclization of linear peptide precursors, specifically, those transformations that are catalyzed by peptidases. While canonical peptidases catalyze the proteolysis of linear peptides, the biosynthetic macrocyclases couple proteolytic cleavage with cyclization to produce macrocyclic compounds. In this Perspective, we explore the different structural features that impart on each of these biosynthetic proteases the distinct ability to perform macrocyclization and focus on their potential use in biotechnology.


Subject(s)
Peptide Hydrolases/chemistry , Peptides, Cyclic/chemical synthesis , Protein Biosynthesis , Biotechnology/methods , Peptides, Cyclic/chemistry
12.
Mol Cell Proteomics ; 15(5): 1658-69, 2016 05.
Article in English | MEDLINE | ID: mdl-26929214

ABSTRACT

The Katanin family of microtubule-severing enzymes is critical for remodeling microtubule-based structures that influence cell division, motility, morphogenesis and signaling. Katanin is composed of a catalytic p60 subunit (A subunit, KATNA1) and a regulatory p80 subunit (B subunit, KATNB1). The mammalian genome also encodes two additional A-like subunits (KATNAL1 and KATNAL2) and one additional B-like subunit (KATNBL1) that have remained poorly characterized. To better understand the factors and mechanisms controlling mammalian microtubule-severing, we have taken a mass proteomic approach to define the protein interaction module for each mammalian Katanin subunit and to generate the mammalian Katanin family interaction network (Katan-ome). Further, we have analyzed the function of the KATNBL1 subunit and determined that it associates with KATNA1 and KATNAL1, it localizes to the spindle poles only during mitosis and it regulates Katanin A subunit microtubule-severing activity in vitro Interestingly, during interphase, KATNBL1 is sequestered in the nucleus through an N-terminal nuclear localization signal. Finally KATNB1 was able to compete the interaction of KATNBL1 with KATNA1 and KATNAL1. These data indicate that KATNBL1 functions as a regulator of Katanin A subunit microtubule-severing activity during mitosis and that it likely coordinates with KATNB1 to perform this function.


Subject(s)
Adenosine Triphosphatases/metabolism , Microtubules/metabolism , Proteomics/methods , Adenosine Triphosphatases/chemistry , Cell Nucleus/metabolism , HeLa Cells , Humans , Katanin , Mass Spectrometry , Meiosis , Protein Interaction Maps
SELECTION OF CITATIONS
SEARCH DETAIL
...